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Continuity of Functions

We have seen that even when f (c), lim
x→c−

f (x) and lim
x→c+

f (x) all exist, it is

still possible that they are not equal.

When they are all well-defined and equal on real numbers (we do not
consider ∞ or −∞), we say that the function is continuous at x = c .

Roughly speaking, this is a mathematical way to say that no “sudden
jump” on the graph will occur when passing through x = c .
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Continuity of Functions

In this course, we focus on the continuity of functions defined on an
interval, or the union of several intervals.

If c is a real number in the domain of a function f such that a small
open interval (c − h, c + h) containing c , where h > 0, is entirely in
the domain of f , c is called an interior point of the domain of f .

A function y = f (x) is said to be continuous at an interior point c in
its domain if lim

x→c
f (x) = f (c).

Luo Luo (HKUST) MATH 1013 4 / 30



Continuity of Functions

If a is a number in the domain of of f which is not an interior point,
then the continuity condition lim

x→a
f (x) = f (a) should be understood

as f (x) is getting closer and closer to f (a) as x in the domain of f is
getting closer to closer to a.

In particular, x → a should be understood as x → a+ is a is a “left
endpoint” of the domain. Similarly, x → a should be understood as
x → b− if b is a “right endpoint” of the domain.
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Continuity of Functions

Sometimes, d is called a point of discontinuity of a function f if the
condition

lim
x→a

f (x) = f (d)

is not satisfied, i.e., either

f (d) is not well-defined;

or or the limit does not exist at all;

or f (d) is well-defined but not equal to the well-defined limit
lim
x→a

f (x).

According to this definition, every point not in the domain of f could
be considered as a point of discontinuity of the function, which is
sometime confusing.
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Continuity of Functions

Example

It is easy to see where the functions are continuous/discontinuous:

1 3 5 2 -2 24

(i) (ii) (iii)

(i) Point of discontinuity: x = 1, 3, or 6. (Continuous at every point in the
domain except x = 1, 3.)

(ii) Point of discontinuity: x = 1, 2, 3, or 4. (Continuous at every point in
the domain except x = 1, 2, 3.)

(iii) Continuous at every point in the domain of the function.

(checking across which point the graph breaks into “separate pieces”).
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Continuity of Functions

Example

Find the value of the constant k such that the following piecewise
polynomial function is continuous everywhere.

f (x) =

{

x2 + 3x − 2k if x ≤ 1,

2x − 3k if x > 1.

It is easy to check that for any a 6= 1, lim
x→a

f (x) = f (a).

We now check the continuity condition of f at 1. Note that

lim
x→1−

f (x) = lim
x→1−

(x2 + 3x − 2k) = 4− 2k = f (1)

lim
x→1+

f (x) = lim
x→1+

(2x − 3k) = 2− 3k

To make f continuous at x = 1, we need to pick k so that
4− 2k = 2− 3k , i.e., k = −2.
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Properties of Continuous Functions

Sums, differences, products of continuous functions are continuous.

In particular, polynomial functions are continuous on the entire real
line. Recall here that a polynomial function of degree n is a function
of the form

f (x) = axn + an−1x
n−1 + · · ·+ a1x + a0

where a0, a1, . . . , an are real numbers, and n is a non-negative integer.
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Properties of Continuous Functions

If two functions f (x), g(x) are continuous at x = c and g(c) 6= 0,
then the quotient f

g
is continuous at x = c .

In particular, rational functions are continuous on the real line, except
at the zeros of their denominators, i.e., continuous on their domains.
Recall here that a rational function is a function of the form

f (x) =
p(x)

q(x)
,

where p(x), q(x) are polynomials with q(x) 6≡ 0.

For any positive integer n, the root function f 1/n of a function f

continuous at x = c is also continuous at x = c , as long as the power
function is well-defined on an open interval containing c .
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Properties of Continuous Functions

These properties are straightforward consequences of the limit laws.

For example, if f and g are continuous at a, then

lim
x→a

f (x) = f (a), lim
x→a

g(x) = g(a)

and hence

lim
x→a

(f + g)(x)

= lim
x→a

(f (x) + g(x))

= lim
x→a

f (x) + lim
x→a

g(x)

=f (a) + g(a) = (f + g)(a)

i.e., the function f + g is also continuous at a.
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The (ε, δ)-Definition of Continuity

The (ε, δ)-Definition of Continuity

Given a function f whose domain is D and an element x0 in D, f is said to
be continuous at the point x0 when the following holds:

For any real number ε > 0, there exists some number δ > 0 such that for
all x in the domain of f with

|x − x0| < δ,

the value of f (x) satisfies

|f (x)− f (x0)| ≤ ε.

The elementary functions sin x , cos x , tan x , ax and loga x are all
continuous at any point in their domains. We can check their graphs or
prove the continuity by (ε, δ)-definition.
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Properties of Continuous Functions

Note also that if f is continuous at c and g is continuous at f (c),
then the composition of the two functions g ◦ f is continuous at c .

In fact, as x → c , f (x) → f (c) by the continuity of f at c , and hence
g(f (x)) → g(f (c)) by the continuity of g at f (c).

Exercise

By drawing graphs, find some examples of f and g so that g ◦ f is
continuous at c , while

g is not continuous at f (c);

or f is not continuous at c .
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Intermediate Value Theorem

Theorem (Intermediate Value Theorem)

Suppose the function y = f (x) is continuous on a closed interval [a, b] and
let w be a real number between f (a) and f (b), where f (a) 6= f (b). Then
there must be a number c in (a, b) such that f (c) = w.

y

x

a b

w

c

f(a)

f(b)

In other words, the equation f (x) = w must have at least one root in the
interval (a, b). The Intermediate Value Theorem is very useful in locating
roots of equations.
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Intermediate Value Theorem

Example

Show that there is a root of the equation 4x3 − 6x2 + 3x − 2 = 0 in the
interval (1, 2).

Let f (x) = 4x3 − 6x2 + 3x − 2, which is continuous on [1,2]. Then 0 is a
number between f (1) and f (2):

−1 = f (1) < 0 < f (2) = 12.

By the Intermediate Value Theorem, there must be a number c in (1, 2)
such that f (c) = 0.

Similarly, f (1.5) = 3.4 > 0, hence the equation must have a root in the
interval (1, 1.5). We can also compute f (1.25) to determine the root lies
in (1.1.25) or (1.25, 1.5).

Continuing in this manner, one can end up with the “Bisection Method”
for locating approximate roots of equations.
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Intermediate Value Theorem

By the Intermediate Value Theorem, the problem of solving an inequality
of the form f (x) < 0 for any continuous function f is essentially the same
as solving f (x) = 0.

Once the zeros or undefined point of f (x) are all located, it is just a
matter of sign checking for f (x) in various intervals in order to solve the
inequality f (x) < 0 or f (x) > 0.
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Intermediate Value Theorem

For example, the roots and undefined points of

(x + 3)(2x − 5)

x + 2
= 0

are x = −3, 52 and −2 respectively, which divide the real line into four
disjoint open intervals:

(−∞,−3), (−3,−2),

(

−2,
5

2

)

,

(

5

2
,∞

)

.

Note that (x+3)(2x−5)
x+2 cannot change sign in each of these intervals, since

no other root is possible. By putting in some x values in these intervals, it
is easy to see that

f (x)











< 0 if x < −3 or − 2 < x <
5

2

> 0 if − 3 < x < −2 or x >
5

2
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Limit Definition of Derivatives

Recall that the rate of change of a function y = f (x) at x = a is a certain
limit called the derivative of f at a , which is denoted by f ′(a), and is
defined by

f ′(a) = lim
h→0

f (a+ h)− f (a)

h

or
= lim

x→a

f (x)− f (a)

x − a

whenever the limit exists.

The function f is said to be differentiable at x = a when f ′(a) exists
on real numbers. (only correct for single variable calculus)

Recall also that the limit f ′(a) can be interpreted as the slope of the
tangent line to the graph of y = f (x) at the point (a, f (a)).
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Limit Definition of Derivatives

If we want to measure how fast the function value y = f (x) changes as x
varies, we consider the derivative function f ′(x), which is defined as
follows:

f ′(x) = lim
h→0

f (x + h)− f (x)

h

whenever the limit exists. Geometrically speaking, f ′ is the slope function
of f .

(x,f(x))

(x+h,f(x+h))

f(x+h)-f(x)

h

y

x

y=f(x)

tangent line

secant line

Slope of secant line will approach the 

slope of the tangent line as h approaches 0.
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Limit Definition of Derivatives

Some other often used notations to denote the derivative f ′(x) of the
function y = f (x) are as follows:

df

dx
,

dy

dx
, y ′, and

df

dx

∣

∣

∣

∣

x=a

=
dy

dx

∣

∣

∣

∣

x=a

= y ′(a) = f ′(a).

The process of finding the derivative of a given function is called
differentiation.

When computing derivatives by using the limit definition of derivative, it is
sometimes called differentiating by the first principle.
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Examples of Derivatives

Example

Find the equation of the tangent line to the graph of the function
y = f (x) = 2x2 − 3 at the point (1,−1).

The slope of the tangent line passing through (1,−1) is

lim
h→0

f (1 + h)− f (1)

h
= lim

h→0

[2(1 + h)2 − 3]− [2 · 12 − 3]

h

= lim
h→0

2 + 4h + 2h2 − 3− 2 + 3

h
= lim

h→0
(4 + 2h) = 4

Therefore the slope of the tangent line at (1,−1) is 4, and the equation of
the tangent line is given by

y − (−1)

x − 1
= 4 =⇒ y = 4x − 5
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Examples of Derivatives

Example

Given function y = f (x) = 2x2 − 3, find the derivative function f ′(x).

The derivative function f ′(x), by the limit definition of derivative (or the
“first principle”), is given by the limit

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

[2(x + h)2 − 3]− [2x2 − 3]

h

= lim
h→0

4xh + 2h2

h

= lim
h→0

(4x + 2h)

=4x
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Examples of Derivatives

Example

Differentiate the function

f (x) =
1

x + 2

by using the limit definition of derivative.

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

1

(x + h) + 2
− 1

x + 2

h

= lim
h→0

(x + 2)− (x + h + 2)

(x + h + 2)(x + 2)

h
= lim

h→0

−1

(x + h + 2)(x + 2)

=− 1

(x + 2)2
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Examples of Derivatives

Example

Differentiate the function

g(x) =
√
2x − 1

by using the limit definition of derivative.

g ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

√

2(x + h)− 1−
√
2x − 1

h

= lim
h→0

(
√
2x + 2h − 1−

√
2x − 1)(

√
2x + 2h − 1 +

√
2x − 1)

h(
√
2x + 2h − 1 +

√
2x − 1)

= lim
h→0

2√
2x + 2h − 1 +

√
2x − 1

=
1√

2x − 1
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Differentiable and Continuous

Theorem

If f is differentiable at a point x = a, then f is continuous at x = a.

Proof.

We have

lim
x→a

f (x)− f (a) = lim
x→a

(f (x)− f (a))

= lim
x→a

[

f (x)− f (a)

x − a
· (x − a)

]

= lim
x→a

f (x)− f (a)

x − a
· lim
x→a

(x − a)

=f ′(a) · 0 = 0

That is, lim
x→a

f (x) = f (a) and hence the function is continuous at a.
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Non-Differentiability

The derivative of a continuous function may not exist at every point.

A basic example is f (x) = |x |. Its derivative at x = 0, namely f ′(0), does
not exist since there is no tangent line to the graph at (0, 0).

−4 −3 −2 −1 1 2 3 4

−2

−1

1
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3
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5
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y = |x |

x

y
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Non-Differentiability

More precisely, by the limit definition of derivative, we have

f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

|h| − 0

h

but

lim
h→0+

|h| − 0

h
= lim

h→0+

h

h
= 1, lim

h→0−

|h| − 0

h
= lim

h→0−

−h

h
= −1

i.e., the one-sided limits do not agree and therefore the limit does not exist.

Exercise

Show that f (x) = |x | is differentiable at x = x0 whenever x0 6= 0.
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Non-Differentiability

Exercise

Show by working the limit definition of derivative that f ′(0) and g ′(0) do
not exist where

f (x) =

{

x sin 1
x

if x 6= 0,

0 if x = 0.
and g(x) =

{

x2 sin 1
x

if x 6= 0,

0 if x = 0.

−0.2 0.2

−0.2

0.2

y=x sin 1
x

y=−x y=x

x

y
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y
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Weierstrass Function

The Weierstrass function is an example of a real-valued function that is
continuous everywhere but differentiable nowhere.

In Weierstrass’s original paper, the function was defined as follows:

f (x) =
∞
∑

n=0

an cos(bnπx),

where 0 < a < 1, b is a positive odd integer and ab > 1 + 3
2π.
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