Calculus IB: Lecture 03

Luo Luo

Department of Mathematics, HKUST

http://luoluo.people.ust.hk/

One-to-One Functions

- 2 Power Functions
- Inverse Functions
- 4 Exponential and Logarithmic Functions
- 5 Radian Measure of an Angle
- **6** Sine and Cosine Functions

Outline

One-to-One Functions

- 2 Power Functions
- 3 Inverse Functions
- 4 Exponential and Logarithmic Functions
- 5 Radian Measure of an Angle
- 6 Sine and Cosine Functions

One-to-One Functions

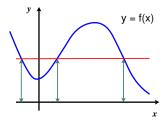
- Recall that for any x in the domain of a function f, only one function value f(x) can be assigned to x.
- 2 However, it is possible that two different numbers $x_1 \neq x_2$ in the domain of f have the same function value, i.e. $f(x_1) = f(x_2)$.
- By ruling out above possibility, we have the concept of a one-to-one function: A function f is said to be one-to-one if f(x₁) ≠ f(x₂) for any two numbers x₁ ≠ x₂ in the domain of f.
- In other words, f(x) never takes on the same function value twice or more times when x runs through the domain of f; or equivalently, the equation

$$f(x) = b$$

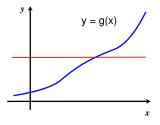
has exactly one solution for any b in the range of f. In particular, f is a one-to-one function if $x_1 = x_2$ whenever $f(x_1) = f(x_2)$.

One-to-One Functions

Graphically speaking, we have the *Horizontal Line Test* which says that f is a one-to-one function if every horizontal line hits the graph of f at most once.



f is not one-to-one : several x-values can produce the same y-value



g is one-to-one : different x-values can not produce the same y-value

Example

Let f be defined by $f(x) = x^2$. It is obviously that f takes on every positive number $b \neq 0$ exactly two times, since $x^2 = b$ has exactly two roots $x = \pm \sqrt{b}$ for any b > 0; e.g.,

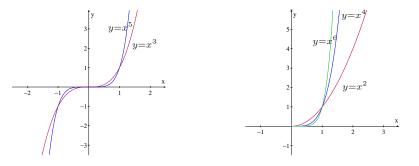
$$f(2) = 2^2 = 4 = (-2)^2 = f(-2)$$
.

f is thus not a one-to-one function.

However, if the domain of $f(x) = x^2$ is *restricted* to $0 \le x < \infty$, the function f is then one-to-one, since $x^2 = b$ has exactly one non-negative solution \sqrt{b} .

Increasing (Decreasing) Functions are One-to-One

- If f is an increasing function with domain D a set of real numbers, then f(x₁) < f(x₂) for any number x₁, x₂ in the domain D such that x₁ < x₂. Hence f(x₁) ≠ f(x₂) for any x₁ ≠ x₂.
- 2 Similarly, the decreasing functions are also one-to-one functions.
- For any positive integer n, the power function y = x²ⁿ⁺¹ is an increasing function with domain -∞ < x < ∞. Similarly, the power function y = x²ⁿ is an increasing function when the domain is restricted to 0 ≤ x < ∞.



Outline

One-to-One Functions

2 Power Functions

3 Inverse Functions

4 Exponential and Logarithmic Functions

- 5 Radian Measure of an Angle
- 6 Sine and Cosine Functions

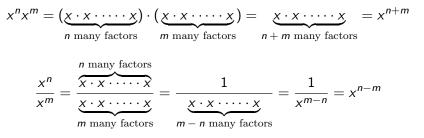
Note that for any positive integer *n*, the function $\frac{1}{x^n}$ can also be expressed in the form of power function as $\frac{1}{x^n} = x^{-n}$.

The *exponent laws* for integer powers (or exponents) then follow easily:

(i)
$$x^{0} = 1$$
 (by convention) (ii) $x^{n+m} = x^{n}x^{m}$ (iii) $x^{n-m} = \frac{x^{n}}{x^{m}}$
(iv) $(x^{n})^{m} = x^{nm}$ (v) $(xy)^{n} = x^{n}y^{n}$ (vi) $(\frac{x}{y})^{n} = \frac{x^{n}}{y^{n}}$

where *n*, *m* are any integers.

For example, if n, m are positive integers with n < m, then



Note that these exponent laws hold also for exponents which are real numbers. However, it would be harder to see what x^p means when p is a irrational number (such as $p = \sqrt{2}$).

Outline

One-to-One Functions

- 2 Power Functions
- Inverse Functions
- 4 Exponential and Logarithmic Functions
- 5 Radian Measure of an Angle
- 6 Sine and Cosine Functions

Consider the linear relation

$$y=2x+3$$

between x and y, where y is considered as a function of x, can be rewritten as

$$x = \frac{y-3}{2}$$

Hence x can then be considered as a function of y.

The same process can be applied to any one-to-one functions.

Inverse Functions Arising from One-to-One Functions

If f is a one-to-one function, then for any b in the range of f, the equation f(x) = b has exactly one solution in the domain of f.

We can therefore define *inverse function* of f, usually denoted by f^{-1} (Warning: the symbol f^{-1} here does not mean $\frac{1}{f}$), by reversing the roles of the domain and range of f as follows:

$$f^{-1}: \begin{array}{cc} \text{range of } f & \text{domain of } f \\ \| & & \\ \text{domain of } f^{-1} & & \\ \end{array} \begin{array}{c} \text{domain of } f \\ \text{range of } f^{-1} \end{array}$$

where

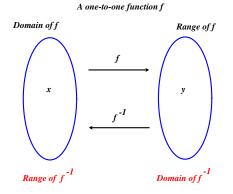
 $f^{-1}(b)$ = the unique solution of the equation f(x) = b

for any b in the domain of f^{-1} (i.e., the range of f).

Inverse Functions and Arrow Diagram

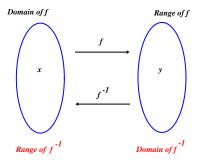
Suppose we use an arrow diagram to represent a function f, which assigns to any given number x in the domain of f a unique number y in the range of f (i.e., y = f(x)). Then, defining f^{-1} is just like "reversing the arrow" of f:

- turning the range of f into the domain of the inverse function f⁻¹;
- turning the domain of f into the range of the inverse function f⁻¹;
- x = f⁻¹(y) coming from the unique solution of f(x) = y



Inverse Functions and Arrow Diagram

- A one-to-one function y = f(x) gives rise to a one-to-one matching of the numbers in two sets.
- Oppending on which variable you take as independent variable, you have either the original function f(x), or the inverse function f⁻¹(y).
- The following properties of f and f⁻¹ follow easily from chasing the arrows:
 f⁻¹(f(x)) = x for any x in the domain of f; and f(f⁻¹(y)) = y for any y in the range of f.



A one-to-one function f

```
Luo Luo (HKUST)
```

Examples of Inverse Functions

Example

Find the inverse function $f^{-1}(x)$ for the function $f(x) = \frac{3x+2}{2x-1}$. Let

$$y = \frac{3x+2}{2x-1}$$
, then $y(2x-1) = 3x+2 \iff (2y-3)x = y+2$.

Hence we have

$$x = \frac{y+2}{2y-3} = f^{-1}(y)$$
 and $f^{-1}(x) = \frac{x+2}{2x-3}$.

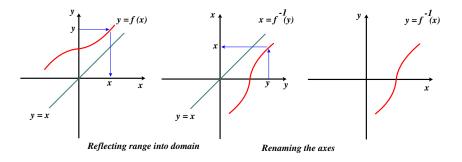
The domain of f^{-1} , which is the range of f, is given by $x \neq \frac{3}{2}$; i.e.,

$$\left(-\infty, \frac{3}{2}\right) \bigcup \left(\frac{3}{2}, \infty\right)$$
. And the range of f^{-1} , which is the domain of f , is given by $x \neq \frac{1}{2}$; i.e., $\left(-\infty, \frac{1}{2}\right) \bigcup \left(\frac{1}{2}, \infty\right)$

Graphs of Inverse Functions

It is interesting that the graph of $x = f^{-1}(y)$ is the same as the graph of y = f(x), except that the y-axis is now viewed as the domain axis.

In particular, the graph of the inverse function $y = f^{-1}(x)$ can be obtained by reflecting the graph of the one-to-one function y = f(x)across the line y = x, or simply by renaming the x-axis as the y-axis, and y-axis as the x-axis.

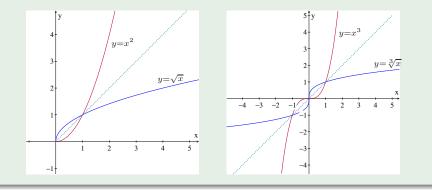


Graphs of Inverse Functions

Example

For any integer $n \ge 2$, the *n*-th root function $\sqrt[n]{x}$ is defined as follows:

 $\sqrt[n]{x} = \begin{cases} \text{the inverse function of } y = x^n \text{ with domain } [0, \infty) & \text{if } n \text{ is even} \\ \text{the inverse function of } y = x^n & \text{if } n \text{ is odd} \end{cases}$



Luo Luo (HKUST)

MATH 1013

In particular, the domain of an *n*-th root function is given as follows.

domain of
$$\sqrt[n]{x}$$
 is given by:
$$\begin{cases} [0,\infty) & \text{if } n \text{ is even} \\ (-\infty,\infty) & \text{if } n \text{ is odd} \end{cases}$$

Using exponent notation, an *n*-th root function can be written as

$$\sqrt[n]{x} = x^{\frac{1}{n}}.$$

More generally, a *power function* of the form $x^{\frac{n}{m}}$, where *n* is an integer and *m* is a positive integer, is defined by

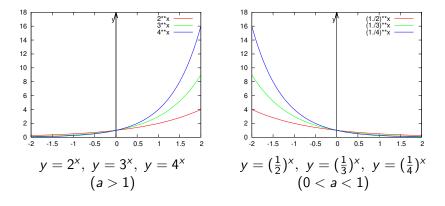
$$x^{\frac{n}{m}}=\sqrt[m]{x^n}$$
.

Outline

One-to-One Functions

- 2 Power Functions
- 3 Inverse Functions
- 4 Exponential and Logarithmic Functions
 - 5 Radian Measure of an Angle
- 6 Sine and Cosine Functions

For any positive real number $a \neq 1$, the *exponential function with base a* is given by $y = a^x$, whose graphs are shown as follows.



Exponential and Logarithmic Functions

- The domain of $y = a^x$ is $(-\infty, \infty)$.
- 2 The range of $y = a^x$ is $(0, \infty)$.
- We also have

$$y = a^{x} = \begin{cases} \text{is an increasing function} & \text{if } a > 1, \\ \text{is a decreasing function} & \text{if } 0 < a < 1. \end{cases}$$

Since many expressions with negative a like (-1)^{1/2} it not a real number, and since a = 0 leads to a trivial constant function, we usually only consider the case of a > 0.

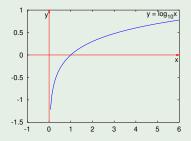
Exponential and Logarithmic Functions

An exponential function $y = a^x$ must be one-to-one (try to prove it), and hence has an inverse function, which is denoted by $x = \log_a y$, by reversing the roles of the domain and range:

$$\begin{cases} y = a^{x} \\ \text{domain:} -\infty < x < \infty \\ \text{range:} y > 0 \end{cases}$$
$$\longleftrightarrow \begin{cases} x = \log_{a} y \\ \text{domain:} y > 0 \\ \text{range:} -\infty < x < \infty \end{cases}$$
$$\longleftrightarrow \begin{cases} y = \log_{a} x \\ \text{domain:} x > 0 \\ \text{range:} -\infty < y < \infty \end{cases}$$

Example (take a = 10 and see what happens)

The graph of the *exponential function with base 10*, $y = 10^{x}$, gives you the graphs of the *common logarithmic function* $y = \log_{10} x$ at the same time.



Note that to find the value of $b = \log_{10} 100$ is just a problem of solving the equation $10^b = 100 = 10^2$, and hence obviously $b = 2 = \log_{10} 100$. It is not so easy to find the exact value of $c = \log_{10} 8$ though, which means $10^c = 8$. A rough estimate is $\frac{1}{2} < c < 1$ since $10^{1/2} < 8 = 10^c < 10^1$.

Properties of Exponential and Logarithmic Functions

Once you understand how to convert exponential relationship into logarithmic relationship, and vice versa,

$$y = a^x \quad \longleftrightarrow \quad x = \log_a y$$

the following properties of logarithms are easy to verify.

Exponential Function	Logarithmic Function
$a^0 = 1$	$\log_a 1 = 0$
$a^1 = a$	$\log_a a = 1$
$a^{x} = a^{x}$	$\log_a a^x = x$
$a^{\log_a x} = x$	$\log_a x = \log_a x$
$a^{x}a^{y}=a^{x+y}$	$\log_a xy = \log_a x + \log_a y$
$\frac{a^{x}}{a^{y}} = a^{x-y}$	$\log_a \frac{x}{y} = \log_a x - \log_a y$
$(a^x)^y = a^{xy}$	$\log_a x^y = y \log_a x$
	$\log_c x = \frac{\log_a x}{\log_a c}$

Verify the property $\log_a(xy) = \log_a x + \log_a y$

Let $C = \log_a x$, and $D = \log_a y$. Hence we have $a^C = x$ and $a^D = y$. What if you multiplying the two together?

$$a^{C}a^{D} = xy \iff a^{C+D} = xy$$

Now, convert it to:

$$\log_a(xy) = C + D = \log_a x + \log_a y$$

All other properties in the table above can be checked by similar arguments. (Exercise!)

The exponential/logarithmic function with a special base $e \approx 2.7182...$

$$y = e^x$$
, $y = \log_e x \triangleq \ln x$

is called the *natural exponential/logarithmic function*. Note that all other exponential function can be expressed in term of the natural exponential function, since

$$a^{x} = e^{\ln a^{x}} = e^{x \ln a}$$

For example, $3^x = e^{x \ln 3}$.

Why are we interested in the very special number $e \approx 2.7182...?$

More precisely, e can be defined as the "limit" as follows

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e.$$

We shall discuss the topic about "e" in more detail later.

Example

Find the domain and range of the function $y = f(x) = 2 \ln(5 - x) + 1$. What is its inverse function?

Recall that $\log_a(\bigstar)$ is well-defined if and only if $\bigstar > 0$. Hence the domain of f(x) is given by: 5 - x > 0, i.e., x < 5. We also have

$$y = 2\ln(5 - x) + 1$$
$$\implies \frac{y - 1}{2} = \ln(5 - x)$$
$$\implies 5 - x = e^{\frac{y - 1}{2}}$$
$$\implies x = 5 - e^{\frac{y - 1}{2}}$$

i.e., the inverse function $x = f^{-1}(y) = 5 - e^{\frac{y-1}{2}}$. The range of f(x) is the domain of $f^{-1}(y)$, which is the set of all real numbers.

Example

t

Solve the following equations: (a) $24(1 - e^{-t/2}) = 16$; (b) $2^{2x-3} = 3^{x+1}$

$$24(1 - e^{-t/2}) = 16$$

$$2^{2x-3} = 3^{x+1}$$

$$1 - e^{-t/2} = \frac{16}{24} = \frac{2}{3}$$

$$e^{-t/2} = \frac{1}{3}$$

$$-\frac{t}{2} = \ln \frac{1}{3}$$

$$(2x-3) \ln 2 = (x+1) \ln 3$$

$$(2 \ln 2 - \ln 3)x = \ln 3 + 3 \ln 2$$

$$= -2 \ln \frac{1}{3} = \ln 9 \quad (\approx 2.1792)$$

$$x = \frac{\ln 3 + 3 \ln 2}{2 \ln 2 - \ln 3}$$

The hyperbolic functions are defined and denoted by

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}, \quad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Please verify the following identities:

- $\cosh^2 x \sinh^2 x = 1$
- $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$
- $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$

Hyperbolic functions have some similar properties to *trigonometric functions*.

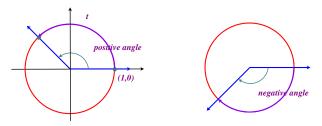
Outline

One-to-One Functions

- 2 Power Functions
- 3 Inverse Functions
- 4 Exponential and Logarithmic Functions
- 5 Radian Measure of an Angle
 - 6 Sine and Cosine Functions

If the point (1,0) starts to travel along the unit circle centered at the (0,0) through a distance θ in counterclockwise direction, the angle subtended by the corresponding circular arc is said to be a positive angle with *radian measure* θ .

Angles obtained by clockwise rotations are considered as negative angles.



Directed angle : angle can be assigned a +ve or -ve sign

Radian is a measure of an angle by circular arc length along the unit circle.

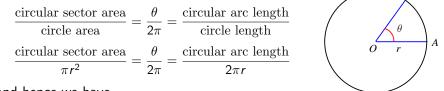
- Recall that the length of a unit circle is 2π . Thus the radian measure of a 360° angle is 2π , and -2π if the angle is -360° .
- In proportion, the degree measure and radian measure of an angle can be converted to each other according to

$$\frac{\text{radian measure}}{\text{degree measure}} = \frac{2\pi}{360} = \frac{\pi}{180}$$

In particular, we have

$$360^{\circ} = 2\pi \text{ rad} \qquad 180^{\circ} = \pi \text{ rad} \qquad 45^{\circ} = \frac{\pi}{4} \text{ rad}$$
$$30^{\circ} = \frac{\pi}{6} \text{ rad} \qquad 60^{\circ} = \frac{\pi}{3} \text{ rad} \qquad -90^{\circ} = \frac{\pi}{2} \text{ rad}$$

Since the length and area of a circle of radius r are $2\pi r$ and πr^2 , the arc length and area of a circular section subtended by an angle θ in radians can be determined according to the following proportion:



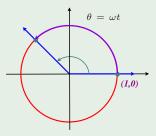
and hence we have

circular sector area $=\frac{1}{2}r^2\theta$ and circular arc length $=r\theta$

where θ is measured in radians, NOT degrees.

Example

If a particle is moving along a unit circle with *angular velocity* ω radians per second, then the angle subtended after t seconds is given by $\theta = \omega t$ radians, which is the distance traveled by the particle.



If the radius of the circle is R, then the distance traveled by the particle after t seconds is $R\omega t$.

Outline

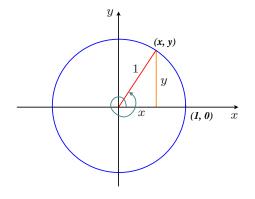
One-to-One Functions

- 2 Power Functions
- 3 Inverse Functions
- 4 Exponential and Logarithmic Functions
- 5 Radian Measure of an Angle
- **6** Sine and Cosine Functions

Sine and Cosine Functions

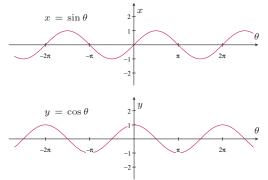
When a point originally at (0,1) moves along the unit circle through an angle of θ radians, the coordinates of the position (x, y) reached by the point depend on the value of θ , i.e., they are functions of θ :

 $y = \sin \theta$ and $x = \cos \theta$, where $\theta \in (-\infty, +\infty)$ and $x, y \in [-1, 1]$.



Sine and Cosine Functions

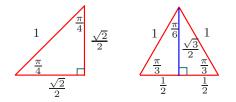
It is easy to plot the graphs of $x = \sin \theta$ and $y = \cos \theta$ from the geometry of the circle.



Since θ and $2\pi + \theta$ give you the same point on the unit circle, we have $\sin(\theta + 2\pi) = \sin \theta$ and $\cos(\theta + 2\pi) = \cos \theta$ i.e., both functions are periodic with period 2π .

Some Function Values of $\sin \theta$ and $\cos \theta$

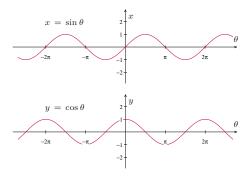
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	-1

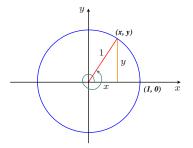


- $\sin \theta = 0$ if and only if $\theta = n\pi$ for some integer *n*. (points on the unit circle with zero *y*-coordinates are $(\pm 1, 0)$)
- $\cos \theta = 0$ if and only if $\theta = (2n+1)\frac{\pi}{2} = (n+\frac{1}{2})\pi$ for some integer *n*. (points on the unit circle with zero *x*-coordinates are $(0, \pm 1)$)

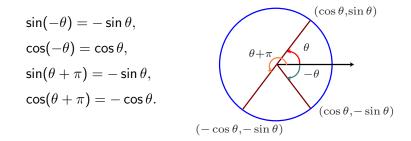
Note that we have the following identities:

- $\sin^2 \theta + \cos^2 \theta = 1$ (Pythagoras Theorem)
- **2** $\cos \theta = \sin \left(\theta + \frac{\pi}{2} \right)$ (graph shifting)
- $in \theta = \cos \left(\theta \frac{\pi}{2} \right)$ (graph shifting)





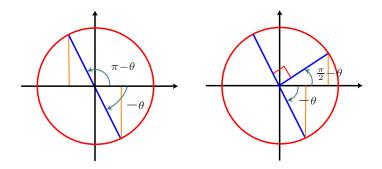
Since θ and $-\theta$ put two points on unit circle symmetric with respect to x-axis and $\theta + \pi$ gives a point antipodal to that of θ , we have



It is easy to see that $\sin \theta$ is an odd function and $\cos \theta$ is an even function.

By studying points on the unit circle given by the angles $\theta,\,\frac{\pi}{2}-\theta$ and $\pi-\theta,$ we have:

$$\sin(\pi - \theta) = \sin \theta,$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta,$
 $\cos(\pi - \theta) = -\cos \theta,$ $\cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta.$



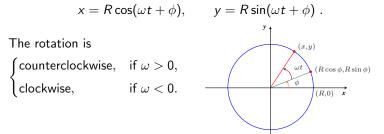
If (x, y) is a point on the circle of radius R, with the equation $x^2 + y^2 = R^2$, we have by proportion that

$$x = R\cos\theta, \qquad y = R\sin\theta.$$

If the point is rotating around the circle with constant angular velocity ω from (R,0), then at time t, the x and y coordinates of the point are given by

$$x = R\cos(\omega t), \qquad y = R\sin(\omega t).$$

If the initial position of the point is (R cos \u03c6, R sin \u03c6) instead of (R, 0), the coordinate functions of the point are given by



- It is clear that functions x = R cos(ωt + φ) and y = R sin(ωt + φ) are periodic with period 2π/|ω|.
- Such functions are often used in describing certain periodic oscillation motion, namely, simple harmonic motion. R is called the amplitude, -φ/ω the phase shift and ωt + φ the phase or phase angle.
- The graphs of these functions can be easily found by performing suitable transformations on the graph of the sine or cosine function.

