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Convergence Criteria

For the unconstrained convex optimization problem

in f
2 )

the convergence of an algorithm can be measured by the following in
metrics:

© Convergence in parameter (suppose there exists optimal solution x*),
where we measure the distance

e = %[ -
@ Convergence of objective value, measured by objective suboptimality
f(x:) — inf f(x).
(x) = inf £(x)
© Convergence of gradient

IVE(xe)ll -
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Convergence Criteria

If f:RY — R is smooth and convex and has an optimal solution x*, then
* * * L *1(12 L * (12
f(xe) — £(x7) < (VF(X"),xt —x >—|—§||xt—x I3 = §||Xt—X 113
and
[IVE(xe)lla = [VF(xe) = V)], < Ljxe — x5,

which implies convergence in parameter implies convergence in objective
value and gradient.

The reverse directions may not hold if the objective is not strongly-convex.
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Black Box Model

Local black box:

@ The only information available for the numerical scheme is the answer
of the oracle.

@ The oracle is local.

Different types of oracles:
@ Zero-order oracle: returns the function value f(x).
@ First-order oracle: returns the function value f(x) and the gradient
V£(x).
© Second-order oracle: returns f(x), Vf(x), and the Hessian V2f(x).
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Black Box Model

There are two participants in the black box model: a learner and an oracle.

© The learner has
e infinite computational power,
o knowledge of the function class to which f belongs,

o knowledge of the domain.
@ The oracle has specific knowledge of the function.
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Black Box Model

The key question:

How many queries to the oracles are necessary and sufficient
to find an e-approximate solution?

We will study this question from two perspectives:
@ Upper bound: Designing algorithms.
@ Lower bound: Information theoretic reasoning.
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Black Box Model

The strength of the black-box model:
@ It will allow us to derive a complete theory of optimization.

@ We will obtain matching upper and lower bounds on the oracle
complexity for various sub-classes of interesting functions.

The weakness of the black-box model:
© It does not limit our computational resources.

@ The side information of the algorithm is ignored.
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© Gradient Descent Methods
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Gradient Descent Methods

We consider the optimization problem

min f(x),

where f : R — R is convex and L-smooth.

The gradient descent method
Xe1 = Xe — NeVE(X¢t)

with 7, =n < 1/L leads to

o112
Lllxo — %l

1 t
— f < f(x
T; (xf)— (X)+ 2T

for any x € RY.
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Minimizing Convex Function

The gradient descent method
Xt41 = Xt — UVf(Xt)
with n: =n < 1/L leads to

T £tV = T 2T
for any x € RY.

Suppose f(-) has a minimizer x* and let X = % ;r;Ol X¢, then we need

2
_ [Luxo—x*uz ,1}
- 2 €

to guarantee f(X) — f(x*) <e.
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Last-Iterate Convergence

It is also possible the establish the last-iterate convergence

2L ||xo — x*|I3

flxr) - flx) < =P

)

which is sublinear.

The proof depends on the results

TIVF0) — VO3 < (VFG) — TF(x), % x°).
and

F(xern) < F(xe) = 3 [VF(xe)3.-
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Nonconvex Optimization

The following inequality
F(xern) < F(xe) = 2 [VF(xe)3-

does not depend on the convexity.

We uniformly sample X from {xo,...,x7_1}, then
N 2L(f(xq) — 1*)
2 V)3 < 2=,

where we suppose f* = inf, cpa f(x) > —00

We require

1> [2000) -]

€2

to find an e-stationary point of f in expectation.
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Minimizing Strongly Convex Function

We consider using gradient descent method
Xer1 = X — NV F(X¢)
with 77, = n < 1/L to solve the optimization problem

min f(x
min #(x),
where f : R? — R is p-strongly-convex and L-smooth.

It holds linear convergence rate

fxr) — ) < (12 (7o) — £0))

T> [ﬁln <f(XT) 6— f(x*)ﬂ

to guarantee f(xo) — f(x*) < ¢, where k = L/ is the condition number.

We require
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Example: Regularized Generalized Linear Model

For regularized linear regression

. 1 2 B2
min £(x) 2 2 [Ax— b3 + 5 x|
where A € R"™9 b e RY and A > 0.
We have
AM(ATA) + 8
2 T 1
f(x)=A"A | d =
V<f(x) + 3 an K "(ATA) T A
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Example: Quadratic Problem

We consider using gradient descent method to solve quadratic problem

1
min f(x) £ =x'Ax — b 'x,
xERd ( ) 2

where A is positive definite.

Then we have

)
fler) = 1) < (13040 ) (Fx0) = F(60)

where A1(A) and Ay(A) are the largest and the smallest eigenvalues of A.

For positive semi-definite A, what about the convergence rate?

Lecture 07 (Fudan University) DATA 620020 luoluo@fudan.edu.cn 15/25



Outline

e Polyak—tojasiewicz Condition

Lecture 07 (Fudan University) 2 luoluo@fudan.edu.cn 16 /25



Polyak—t.ojasiewicz Condition

The linear convergence of gradient descent depends on PL condition
s 1 2
f(x) - < % IVE)I2

where f* = inf,cga f(x). In fact, it does not require strong convexity.

Consider the function
1
f(x) = EXTAX —b'x, (1)

where A € R9%? is nonzero positive semi-definite (possibly not positive
definite).

PL condition holds for (1) with the parameter with i = A\((A), where
Ak(A) is the smallest nonzero eigenvalue of A.

Gradient descent still has linear convergence rate!
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Polyak—t.ojasiewicz Condition

Polyak—tojasiewicz condition and strong convexity:
@ The p-strong convexity leads to PL condition with parameter p.
@ PL condition may not lead to (u-strong) convexity.

Let g : R™ — R be smooth and ji-strongly convex and A € R™*9 js
nonzero. Define the function f : R — R as f(x) = g(Ax), then it
satisfies PL condition.
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© Linear regression
1 2 A2
Z|Ax—b|2+ 2
min 5 [[Ax = bl + 7 lxI2

where A € R"™4 b e R" and A > 0.

@ Logistic regression

1y T A2
min Z; In(1+ exp(—bia x)) + 7 [x]13
=

where a; € RY, b; € {1,—1} and A > 0.
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@ Line Search Methods
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Step Size (Learning Rate)

For gradient descent method
Xe1 = Xt — Nt VF(X¢),
we have showed its convergence with 7 = 1/L.

© It is not easy to evaluate the smoothness parameter L.

@ Directly using n = 1/L may not performs well in practice.
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Line Search Methods

A line search method computes a search direction p, and then decides
how far to move along that direction.

The iteration is given by

Xt+1 = Xt + QtPy,
where the positive scalar a; is called step size, step length or learning rate.
We typically require p; to be a descent direction that satisfies

(pe, VF(x)) <O0.

For example
Q p: = —Vf(xt)
@ p: = —G;1Vr(x;) with some positive definite G; € R¥*?
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Line Search Methods

The ideal choice for « is based on
miné(a) £ F(x; + apy),

a>0

but it is not practical.
We want to efficiently select «; that leads to sufficient reduction in f.

The simple decrease condition

f(xe + a:pe) < f(x¢)

is not enough.
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Wolfe Conditions

We require

f(xt + arpt) <F(xe) + crae(VF(xe), pe),
(VF(x: + aepe), pe) >2(VF(xe), pe)

for some ¢; € (0,1) and ¢ € (c1,1), that is Wolfe conditions.

Suppose that f : R? — R is continuously differentiable and lower bounded.
Let p; be a descent direction at x;, then there exist intervals of step
lengths satisfying the conditions (2) with 0 < ¢; < ¢ < 1.
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Wolfe Conditions

We still consider Wolfe conditions

f(xt + arpe) <f(x¢) + crae(VF(X¢), pe),
(VF(x¢ + aipe), pt) >c2(VFE(xt), pr)

for some ¢; € (0,1) and & € (c1, 1), that is Wolfe condition.

Let x¢+1 = X¢ + a¢p¢, Where p; is a descent direction and oy satisfies the
Wolfe conditions. Suppose that continuously differentiable function

f:RY — R is L-smooth and lower bounded on R? and continuously
differentiable. Then

+oo
_<vf(xt)7pt>
(cos0:)? |V F(xe)||2 < +o0, where cosfy = .
2 (cosOe P IV (sl C = NG el
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Backtracking Line Search

If the algorithm chooses candidate step lengths appropriately, we can use
just the sufficient decrease condition.

Algorithm 1 Backtracking Line Search Method

1: Input: x;,p; €R?, 4>0, 7,¢ € (0,1)

2 a=d&

3: while f(x¢ + apt) > f(x:) + aa(VF(x:), p:) do
4 a+Ta

5:

Output: a; = «
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© Barzilai-Borwein Step Size
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Barzilai-Borwein Step Size

Gradient descent methods with Barzilai-Borwein step size has the forms of

Xt41 = Xt — atVf(xt)

where
oy = [Ixe — thng
<Vf(xt) — Vf(xt_l),xt — Xt_1>
or
o = <Vf(xt) — Vf(xt_]_),xt — Xt_]_>
t =

IVF(xe) = Vi (xe-1)ll3
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