Optimization Theory

Lecture 05

Fudan University

luoluo@fudan.edu.cn

Outline

(1) Second-Order Characterization

(2) Examples and Applications

Outline

(1) Second-Order Characterization

(2) Examples and Applications

Second-Order Characterization

Theorem (Smoothness and Convexity)

Let $f(\cdot)$ be a twice differentiable function defined on \mathbb{R}^{d}
(1) It is L-smooth if and only if $-\mathbf{L I} \preceq \nabla^{2} f(\mathbf{x}) \preceq \mathbf{L I}$ for all $\mathbf{x} \in \mathbb{R}^{d}$.
(2) It is convex if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^{d}$.
(3) It is μ-strongly-convex if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{l}$ for all $\mathbf{x} \in \mathbb{R}^{d}$.

Sometimes, we say $f(\cdot)$ is ℓ-weakly convex if the function

$$
g(\mathbf{x})=f(\mathbf{x})+\frac{\ell}{2}\|\mathbf{x}\|_{2}^{2}
$$

is convex for some $\ell>0$.

Second-Order Characterization

Theorem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose that $\nabla^{2} f(\cdot)$ is continuous in an open neighborhood of $\mathbf{x}^{*} \in \mathbb{R}^{d}$.
(1) If \mathbf{x}^{*} is a local minimizer of $f(\cdot)$, then it holds that

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0} \quad \text { and } \quad \nabla^{2} f\left(\mathbf{x}^{*}\right) \succeq \mathbf{0} .
$$

(2) If it holds that

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0} \quad \text { and } \quad \nabla^{2} f\left(\mathbf{x}^{*}\right) \succ \mathbf{0}
$$

then the point \mathbf{x}^{*} is a strict local minimizer of $f(\cdot)$.

Outline

(1) Second-Order Characterization

(2) Examples and Applications

Examples

(1) For unconstrained quadratic problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}
$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$. We have $\nabla^{2} f(\mathbf{x})=\mathbf{A}$.
(2) For regularized generalized linear model

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(\mathbf{a}^{\top} \mathbf{x}\right)+\frac{\lambda}{2}\|\mathbf{x}\|_{2}^{2} .
$$

where $\phi_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice differentiable. We have

$$
\nabla f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{\prime}\left(\mathbf{a}_{i}^{\top} \mathbf{x}\right) \mathbf{a}+\lambda \mathbf{x}
$$

and

$$
\nabla^{2} f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{\prime \prime}\left(\mathbf{a}_{i}^{\top} \mathbf{x}\right) \mathbf{a}_{i} \mathbf{a}_{i}^{\top}+\lambda \mathbf{I} .
$$

Applications in Matrix Approximation

Given a symmetric positive-definite matrix $\mathbf{K} \in \mathbb{R}^{d \times d}$ and we sample a subset of columns $\mathbf{C} \in \mathbb{R}^{d \times m}$, where $m<d$.

We want to establish the estimator of \mathbf{K} by the formulation

$$
\min _{\mathbf{U} \in \mathbb{R}^{m \times m}, \delta \in \mathbb{R}} f(\mathbf{U}, \delta) \triangleq\left\|\mathbf{K}-\left(\mathbf{C} \mathbf{U C}^{\top}+\delta \mathbf{I}_{d}\right)\right\|_{F}^{2}
$$

It has global solution

$$
\mathbf{U}^{\mathrm{ss}}=\mathbf{C}^{\dagger} \mathbf{K}\left(\mathbf{C}^{\dagger}\right)^{\top}-\delta^{\mathrm{ss}}\left(\mathbf{C}^{\top} \mathbf{C}\right)^{\dagger}
$$

and

$$
\delta^{\mathrm{ss}}=\frac{1}{d-m}\left(\operatorname{tr}(\mathbf{K})-\operatorname{tr}\left(\mathbf{C}^{\dagger} \mathbf{K} \mathbf{C}\right)\right) .
$$

Applications in Matrix Approximation

We can show that

$$
\mathbf{C} \mathbf{U}^{\mathrm{ss}} \mathbf{C}^{\top}+\delta^{\mathrm{ss}} \mathbf{I}_{d} \succ \mathbf{0}
$$

and

$$
\begin{aligned}
& \left(\mathbf{Q} \mathbf{U}^{\mathrm{Ss}} \mathbf{Q}^{\top}+\delta^{\mathrm{ss}} \mathbf{I}_{d}\right)^{-1} \\
= & \left(\delta^{\mathrm{ss}}\right)^{-1} \mathbf{I}_{n}-\left(\delta^{\mathrm{ss}}\right)^{-2} \mathbf{Q}\left(\mathbf{I}_{m}+\left(\delta^{\mathrm{ss}}\right)^{-1} \mathbf{U}^{\mathrm{ss}}\right)^{-1} \mathbf{U}^{\mathrm{ss}} \mathbf{Q}^{\top} .
\end{aligned}
$$

is well-defined, where $\mathbf{Q} \in \mathbb{R}^{d \times m}$ is the orthogonal bias of $\mathbf{C} \in \mathbb{R}^{d \times m}$.

