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Optimal Condition

Theorem

Consider proper closed convex function f and closed convex set C ⊆ (dom f )◦.
A point x∗ ∈ C is a solution of convex optimization problem

min
x∈C

f (x)

if and only if

0 ∈ ∂(f (x∗) + 1C(x
∗)).

Equivalently, there exists a subgradient g∗ ∈ ∂f (x∗), such that any y ∈ C satisfies

⟨g∗, y − x∗⟩ ≥ 0.

In particular, the point x∗ is the solution of the problem in unconstrained case if

0 ∈ ∂f (x∗).
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Regularity Conditions

The following regularity conditions are useful in the convergence analysis
of convex optimization problems.

1 We say that a function f : C → R is G -Lipschitz continuous if for all
x, y ∈ C, we have

|f (x)− f (y)| ≤ G ∥x− y∥2 .

2 We say a differentiable function f : Rd → R is L-smooth if it has
L-Lipschitz continuous gradient. That is, for all x, y ∈ Rd , we have

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2 .

3 If the function

g(x) = f (x)− µ

2
∥x∥22

is convex for some µ > 0, we say f is µ-strongly convex.
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Strong Convexity

Theorem

The function f : C → R defined on convex set C is µ-strongly-convex if
and only if

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y)− µα(1− α)

2
∥x− y∥22

for all x, y ∈ C and α ∈ [0, 1].

Theorem

If a function f is differentiable on open set C, then it is µ-strongly convex
on C if and only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ

2
∥y − x∥22

hols for any x, y ∈ C.

Lecture 05 (Fudan University) DATA 620020 luoluo@fudan.edu.cn 5 / 8



Strong Convexity

If there exists some

x∗ = argmin
x∈C

f (x),

then it is the unique minimizer.

Moreover, the solution is stable such that any approximate solution x̂
satisfying

f (x) ≤ f (x∗) + ϵ

leads to

∥x∗ − x̂∥22 ≤
2ϵ

µ
.
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Lipschitz Continuity and Smoothness

Theorem

A convex function f is G -Lipschitz continuous on (dom f )◦ if and only if

∥g∥2 ≤ G

for all g ∈ ∂f (x) and x ∈ (dom f )◦.

Theorem

A function f : Rd → R is L-smooth (possibly nonconvex), then it holds

|f (y)− f (x)− ⟨∇f (x), y − x⟩| ≤ L

2
∥y − x∥22

holds for any x, y ∈ Rd .
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Smoothness and Convexity

Theorem

A function f : Rd → R is convex and L-smooth, then we have

1 0 ≤ f (y)− f (x)− ⟨∇f (x), y − x⟩ ≤ L

2
∥y − x∥22

2 f (x) + ⟨∇f (x), y − x⟩+ 1

2L
∥∇f (y)−∇(x)∥22 ≤ f (y)

3
1

L
∥∇f (y)−∇(x)∥22 ≤ ⟨∇f (x)−∇f (y), x− y⟩

for any x, y ∈ Rd .
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