Optimization Theory

Lecture 04

Fudan University

luoluo@fudan.edu.cn

We say a vector $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of a proper convex function $f : \mathbb{R}^d \to \mathbb{R}$ at $\mathbf{x} \in \text{dom } f$ if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

holds for any $\mathbf{y} \in \mathbb{R}^d$.

The set of subgradients at $\mathbf{x} \in \operatorname{dom} f$ is called the subdifferential of f at \mathbf{x} , defined as

$$\partial f(\mathbf{x}) \triangleq \{\mathbf{g} \in \mathbb{R}^d : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ holds for any } \mathbf{y} \in \mathbb{R}^d \}.$$

Examples of Subdifferential

• The subdifferential of f(x) = |x| at 0 is the set

 $\partial f(x) = [-1,1].$

What about the general norm?

2) The subdifferential of an indicator function $\mathbb{1}_{\mathcal{C}}(\mathsf{x})$ is

$$\partial \mathbb{1}_{\mathcal{C}}(\mathbf{x}) = \mathcal{N}_{\mathcal{C}}(\mathbf{x}),$$

where

$$\mathcal{N}_{\mathcal{C}}(\mathbf{x}) = \left\{ \mathbf{g} \in \mathbb{R}^d : \left\langle \mathbf{g}, \mathbf{y} - \mathbf{x} \right\rangle \leq 0 \text{ for all } \mathbf{y} \in \mathcal{C} \right\}$$

is called the normal cone of ${\mathcal C}$ at ${\boldsymbol x}.$

③ If a convex function f is differentiable at $\mathbf{x} \in C$, then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$$

4/8

Subdifferential Calculus

Let f_1 and f_2 be proper convex functions on \mathbb{R}^d , then

$$\partial (f_1 + f_2)(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

If the sets $ri(\text{dom } f_1)$ and $ri(\text{dom } f_2)$ have a point in common (overlap sufficiently), we have

$$\partial(f_1+f_2)(\mathbf{x})=f_1(\mathbf{x})+\partial f_2(\mathbf{x}).$$

We define the relative interior $ri(\mathcal{C})$ for convex $\mathcal{C} \subseteq \mathbb{R}^d$ as

$$\begin{split} \mathrm{ri}(\mathcal{C}) = \{ \mathbf{z} \in \mathcal{C} : \text{ for every } \mathbf{x} \in \mathcal{C} \text{ such that} \\ & \text{there exist a } \mu > 1 \text{ such that } (1-\mu)\mathbf{x} + \mu \mathbf{z} \in \mathcal{C} \}. \end{split}$$

It means every line segment in ${\cal C}$ having z as one endpoint can be prolonged beyond z without leaving ${\cal C}.$

5/8

Nonempty subdifferential and convexity:

- **1** If any $\mathbf{x} \in \operatorname{dom} f$ satisfies $\partial f(\mathbf{x}) \neq \emptyset$, then f is convex.
- Solution If f : ℝ^d → ℝ is convex and x belongs to the interior of dom f, then $\partial f(\mathbf{x}) \neq \emptyset$.

Theorem (Hyperplane Separation Theorem)

Let $\mathcal{X} \subseteq \mathbb{R}^d$ is a convex set and \mathbf{x}_0 belongs to its boundary. Then, there exists a nonzero vector $\mathbf{w} \in \mathbb{R}^d$ such that

 $\langle \mathbf{w}, \mathbf{x} \rangle \leq \langle \mathbf{w}, \mathbf{x}_0 \rangle.$

6/8

The subgradient of a convex function may not exist at a boundary point of the domain.

As an example, consider the function

$$f(x) = -\sqrt{x}$$

defined on $[0, +\infty)$, where we have $\partial f(0) = \emptyset$.

Subdifferential Calculus

Given matrix $\mathbf{A} \in \mathbb{R}^{d imes m}$ and vector $\mathbf{b} \in \mathbb{R}^d$, define

$$h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b}),$$

where f is a proper convex on \mathbb{R}^d .

Then the function $h(\mathbf{x})$ is convex and

$$\partial h(\mathbf{x}) \supseteq \mathbf{A}^{\top} \partial f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

If the range of **A** contains a point of ri(dom h), then

$$\partial h(\mathbf{x}) = \mathbf{A}^{\top} \partial f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$