Optimization Theory

Lecture 04

Fudan University

luoluo@fudan.edu.cn

Outline

(1) Subgradient and Subdifferential
(2) Subdifferential Calculus

Outline

(1) Subgradient and Subdifferential

(2) Subdifferential Calculus

Subgradient and Subdifferential

We say a vector $\mathbf{g} \in \mathbb{R}^{d}$ is a subgradient of a proper convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at $\mathbf{x} \in \operatorname{dom} f$ if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle
$$

holds for any $\mathbf{y} \in \mathbb{R}^{d}$.

The set of subgradients at $\mathbf{x} \in \operatorname{dom} f$ is called the subdifferential of f at \mathbf{x}, defined as

$$
\partial f(\mathbf{x}) \triangleq\left\{\mathbf{g} \in \mathbb{R}^{d}: f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \text { holds for any } \mathbf{y} \in \mathbb{R}^{d}\right\} .
$$

Examples of Subdifferential

(1) The subdifferential of $f(x)=|x|$ at 0 is the set

$$
\partial f(x)=[-1,1]
$$

What about the general norm?
(2) The subdifferential of an indicator function $\mathbb{1}_{\mathcal{C}}(\mathbf{x})$ is

$$
\partial \mathbb{1}_{\mathcal{C}}(\mathbf{x})=\mathcal{N}_{\mathcal{C}}(\mathbf{x})
$$

where

$$
\mathcal{N}_{\mathcal{C}}(\mathbf{x})=\left\{\mathbf{g} \in \mathbb{R}^{d}:\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \leq 0 \text { for all } \mathbf{y} \in \mathcal{C}\right\}
$$

is called the normal cone of \mathcal{C} at \mathbf{x}.
(3) If a convex function f is differentiable at $\mathbf{x} \in \mathcal{C}$, then

$$
\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}
$$

Outline

(1) Subgradient and Subdifferential

(2) Subdifferential Calculus

Subdifferential Calculus

Let f_{1} and f_{2} be proper convex functions on \mathbb{R}^{d}, then

$$
\partial\left(f_{1}+f_{2}\right)(\mathbf{x}) \supseteq \partial f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x})
$$

If the sets $\operatorname{ri}\left(\operatorname{dom} f_{1}\right)$ and $\operatorname{ri}\left(\operatorname{dom} f_{2}\right)$ have a point in common (overlap sufficiently), we have

$$
\partial\left(f_{1}+f_{2}\right)(\mathbf{x})=f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x})
$$

We define the relative interior $\operatorname{ri}(\mathcal{C})$ for convex $\mathcal{C} \subseteq \mathbb{R}^{d}$ as

$$
\begin{aligned}
\operatorname{ri}(\mathcal{C})=\{\mathbf{z} \in \mathcal{C}: & \text { for every } \mathbf{x} \in \mathcal{C} \text { such that } \\
& \text { there exist a } \mu>1 \text { such that }(1-\mu) \mathbf{x}+\mu \mathbf{z} \in \mathcal{C}\} .
\end{aligned}
$$

It means every line segment in \mathcal{C} having \mathbf{z} as one endpoint can be prolonged beyond \mathbf{z} without leaving \mathcal{C}.

Subdifferential Calculus

Nonempty subdifferential and convexity:
(1) If any $\mathbf{x} \in \operatorname{dom} f$ satisfies $\partial f(\mathbf{x}) \neq \emptyset$, then f is convex.
(2) If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex and \mathbf{x} belongs to the interior of $\operatorname{dom} f$, then $\partial f(\mathbf{x}) \neq \emptyset$.

Theorem (Hyperplane Separation Theorem)

Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ is a convex set and \mathbf{x}_{0} belongs to its boundary. Then, there exists a nonzero vector $\mathbf{w} \in \mathbb{R}^{d}$ such that

$$
\langle\mathbf{w}, \mathbf{x}\rangle \leq\left\langle\mathbf{w}, \mathbf{x}_{0}\right\rangle .
$$

Subdifferential Calculus

The subgradient of a convex function may not exist at a boundary point of the domain.

As an example, consider the function

$$
f(x)=-\sqrt{x}
$$

defined on $[0,+\infty)$, where we have $\partial f(0)=\emptyset$.

Subdifferential Calculus

Given matrix $\mathbf{A} \in \mathbb{R}^{d \times m}$ and vector $\mathbf{b} \in \mathbb{R}^{d}$, define

$$
h(\mathbf{x})=f(\mathbf{A} \mathbf{x}+\mathbf{b})
$$

where f is a proper convex on \mathbb{R}^{d}.
Then the function $h(\mathbf{x})$ is convex and

$$
\partial h(\mathbf{x}) \supseteq \mathbf{A}^{\top} \partial f(\mathbf{A x}+\mathbf{b}) .
$$

If the range of \mathbf{A} contains a point of $\mathrm{ri}(\operatorname{dom} h)$, then

$$
\partial h(\mathbf{x})=\mathbf{A}^{\top} \partial f(\mathbf{A} \mathbf{x}+\mathbf{b})
$$

