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Course Overview

Optimization

Statistics

Machine
Learning
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Grading Policy

Quiz, 10%
Homework, 30%

Project, 60%
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Optimization Problems

@ Minimization problem

ep

@ Minimax problem

min max f (X,
x€X yey ( y)

© Bilevel problem

min ®(x) £ £(x,y"(x))

s.t. y*(x) € argmin g(x,y)
xXeX
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The Classification of Optimization Problems

The description of the feasible set:
@ unconstrained vs. constrained

@ continuous vs. discrete

The properties of the objective function:
@ linear vs. nonlinear
@ smooth vs. nonsmooth

© convex vs. nonconvex

The settings in real application:
@ deterministic vs. stochastic

@ non-distributed vs. distributed

luoluo@fudan.edu.cn
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Course Overview

We focus on algorithms and theory for continuous optimization.

Some popular topics in machine learning:
@ convex/nonconvex optimization
@ minimax optimization
© stochastic optimization

@ distributed optimization
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Should | quit this course?

The course is good for you if you
@ are interested in the mathematics behind optimization
@ use theory to design better optimization algorithms in practice

© do research in optimization theory

The course may not be good for you if you
© want to learn how to train deep neural networks

@ are not interested in mathematical principle

Prerequisite course: calculus, linear algebra, probability and statistics.
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© Optimization for Machine Learning
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Supervised Learning

Prediction problem
@ input a € A: known information
@ output b € B: unknown information
© goal: to predict b based on a
© observe training data (a1, b1),...,(an, bn)
@ learning/training:
e find prediction function from A to B

e model with parameter x that relates a to b
e training: learn x that fits the training data
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Examples: Binary Classification

Predict whether the price of a stock will go up or down tomorrow.

@ Create feature vector a € RY containing information that are
potentially correlated with its price.

@ Desired response variable (unknown)

b 1, if stock goes up,
—1, if goes down.

© Find a linear predictor x € R? and we hope that

1 ifa'x > 0,
b =
—-1 ifa'x<o.
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Examples: Binary Classification

Construct the optimization problem

1n
in f(x) 2 = I(bax).
min £(x) n;( a/ x)

We consider the following loss functions.
@ 0-1 loss (not continuous):

I(2) = 1-— si2gn(z)

@ hinge loss (convex but nonsmooth):
I(z) = max{1 — z,0}
@ logistic loss (convex and smooth):

I(2) = In(1 + exp(—2))
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Examples: Binary Classification

We typically introduce the regularization term

f(x I(b; AR(x), where A > 0.
)g]erL Iz; ] x) + AR(x), where

Some popular regularization terms in statistics.
@ ridge regularization (smooth and convex)

R(x) 2 [|x3

@ Lasso regularization (nonsmooth and convex)

R(x) = [IxIly

© capped-¢; regularization (nonsmooth and nonconvex)

d
R(x) £ ) “min{|xj|, a} with a>0
j=1
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Examples: Binary Classification

We can use more general loss function and formulate

1 n
in f(x) = =Y I(x;a;, b; R h .
Xngﬁ%rb (x) - Iz; (x;ai, bj) + AR(x), where A >0

For example, we select /(x; a;, b;) by the architecture of neural networks.
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Examples: Adversarial Learning

“panda” noise “gibbon”
57.7% confidence 99.3 % confidence
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Examples: Adversarial Learning

In normal training, we consider

f( I(x;a;, b AR
,:2]@ (x) Z X, ) + AR(x).

In adversarial training, we allow a perturbed y; for each a;.

It leads to the following minimax optimization problem

i f a2 AR
O el (OOt ¥n) Z i3 bi) + AR().

where V; = {y : [y — a;|| < 0} for some small 6 > 0.
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Examples: Generative Adversarial Network (GAN)

Given n data samples ay, ...,a, € RY from an unknown distribution, GAN
aims to generate additional sample with the same distribution as the
observed samples.

We formulate the minimax optimization problem

1 n
in max — 3" InD(6,a) + Eppon [ In(1 — D(8, G(w,2)))].
min max n; n D(8,a:) + E,xon[ In(1 — D(B, G(w,2)))]

© D(0, ") is the discriminator outputs probability of a given sample
coming from the real dataset

@ G(w,") is the generator that tries to make D(6, ) cannot separate
the distributions of G(w;z) and a;
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Examples: Hyperparameter Tuning

Consider the formulation of supervised learning
n

1
f(x I(x; a;, bj) + AR(x), here A > 0.
min f(x) £ IZ;( )+ AR(x),  wher

How to select the value of A7

Use the validation sets {(a1, b1), ..., (4m, bm)}.
@ do grid search on {\1,...,Aq}

@ formulate the bilevel optimization
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Examples: Hyperparameter Tuning

The bilevel formulation of hyperparameter tuning

1
where x*()\) € argmin g(x) £ fz x; a;, bj) + AR(x).
xeR n i—1

Lecture 01 (Fudan University) DATA 620020 luoluo@fudan.edu.cn



Outline

© Optimization for Big Data

Lecture 01 (Fudan University) 2 luoluo@fudan.edu.cn 20 /41



Stochastic Optimization

We consider the optimization problem

1 n
min f(x) £ = fi(x), where nis extremely large.
min £(x) n; i(x) y larg

Stochastic optimization
@ Accessing the exact information of f(x) is expensive.
© We design the algorithms by using the mini-batch

1 b
B Z ﬁéj(x))
j=1

where each & is randomly sampled from {1,...,n} and b < n.
© We allow n = 400, which leads to the online problem

min £(x) £ E¢[F(x;§)]-
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Distributed Optimization

We consider the optimization problem

min f(x) 2 %Z fi(x),
i=1

xERd

where the information of component functions f; are distributed on
different machines.

Distributed optimization
@ centralized vs. decentralized
@ synchronized vs. asynchronous

© federated learning

Lecture 01 (Fudan University) DATA 620020 luoluo@fudan.edu.cn 21 /41



Convex Optimization

“In fact the great watershed in optimization isn't between linearity and
nonlinearity, but convexity and nonconvexity.” by R. T. Rockfeller

We start from addressing the convex optimization problem

min f(x),

which requires the basics of linear algebra, topology and convex analysis.
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@ Basics of Linear Algebra
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We use x; to denote the entry of the n-dimensional vector x such that

Xn

We use aj to denote the entry of matrix A with dimension m x n such that

di1 412 -+ din
A a1 ax - ap c RN
aml adm2 - dmn
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We can also present the matrix as

Ain A -+ Ay
P L R
Apl Ap2 qu

if the sub-matrices are compatible with the partition.

We define
0 0 0 1 0 0
00 0 01 0
0: ) eRan7 I — ER”XH
00 0 00 1
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Matrix Operations: Transpose

The transpose of a matrix results from flipping the rows and columns.
Given a matrix A € R™*" such that

a1 a1 din
a1 a2 azn
— mxXxn
A= i eR ,
adml am2 dmn

d11 421 - aml
dl2 a2 - am2

AT — ' e RMXm.
dln Aa2n amn
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A norm of a vector x € R” written by ||x||, is informally a measure of the
length of the vector. For example, we have the commonly-used Euclidean
norm (or ¢ norm),

Xl = VxTx =

Formally, a norm is any function R” — R that satisfies four properties:
© For all x € R”, we have [|x|| > 0 (non-negativity).
@ ||x|| =0 if and only if x = 0 (definiteness).
@ For all x € R" and t € R, we have ||tx|| = |t| |x]| (homogeneity).
Q@ For all x,y € R", we have |[x +y|| < [|x|[ + [[y[| (triangle inequality).
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Addition /Subtraction

If A e R™" and B € R™*" are two matrices of the same order, then

air+bir awp+bi -+ ain+ by
a1 +bo1 ax+bx - ay+big mxcn

A+B= . : . _ eR
amil + bml am2 + bm2 e dmn + bmn

and

air — b a2 —bi2 -+ ain— b1

A B- a1 — b1 axm — by - az — b1 i~
ami — bmi am2 —bm2 - amn — bmn
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Multiplication

The product of A € R™*" and B € R"*P is the matrix

C = AB € R™*P,

where
C11 C12 '+ Cig
€1 Cxp - Cq
C=| . o | e RTXP,
Cp1 Cp2 -+ Cpq

n
and Cij = Zk:l a,-kbkj.
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Trace

The trace of a square matrix A € R"*", denoted tr(A), is the sum of diagonal
elements in the matrix:

tr(A) = z”: aji.
i=1
The trace has the following properties
@ For A € R™", we have tr(A) = tr (AT).
Q@ ForAcR™" BeR"™" ¢ €R and ¢ € R, we have
tr(ciA + B) = citr(A) + ootr(B).
© For A and B such that AB is square, tr(AB) = tr(BA).

© For A, B and C such that ABC is square, we have

tr(ABC) = tr(BCA) = tr(CAB).
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Inverse

The inverse of a square matrix A € R™" is denoted by A~! and is the
unique matrix such that

AA~l=1=A"1A.

We say that A is invertible or non-singular if A~! exists and non-invertible
or singular otherwise.
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Inverse

If all the necessary inverse exist, we have
0 (A1) l=A
Q (cA)t=ctA!
O (A =@
Q (AB)"1=B!A!
@A l=ATiIfATA=I
For A €¢ R™" B € R"™P, C & RP*P and D € RP*" we have

(A+BCD)'=A"'_-A"'B(C'+DA'B)'DA!

if A and A + BCD are non-singular.
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There are some examples for x € R":
@ The {1-norm: ||x|; = o0 |xi]
@ The lp-norm: ||x||, = />0 x?
@ The ls-norm: ||x||, = max; |x;]

Q@ The {p-norm: |||, = (37 |x,-|”)1/p forp>1
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Given vector norm ||-||, the corresponding induced matrix norm of
A € R™*" is defined as

|Ax|
A = sup |Ax] _ sup [|Ax]|.
xeRnx£0 || x€R" [|x||=1

For example, we define

[All; = sup [Ax];
XER",HXHIZI
and
[Allo= sup  [Ax],-

XER™ ||x|| =1

Lecture 01 (Fudan University) DATA 620020 luoluo@fudan.edu.cn



General matrix norm norm is any function R™*"” — R that satisfies
Q For all A € R™*" we have ||A]| > 0 (non-negativity).
@ ||A|| =0 if and only if A = 0 (definiteness).
© Forall Ac R™" and t € R, we have |[tA]| = |t| [|A]| (homogeneity).

Q For all A,B € R™*", we have |A + B| < ||A] + ||B]|
(triangle inequality).

Some matrix norm cannot be induced from vector norm, such as

1A= [> 2.
i

Lecture 01 (Fudan University) DATA 620020 luoluo@fudan.edu.cn 34 /41



Singular Value Decomposition

The singular value decomposition (SVD) of A € R™*" matrix is
A=UzV',
where U € R™*™ is orthogonal, X € R™*" is rectangular diagonal matrix with

non-negative real numbers on the diagonal and V € R"*" is orthogonal.

@ We use o; to present the (7, i)-th entry of X, which is called the singular
value of A.

@ We typically let the singular values o; be in non-increasing order.

IAl, =01 and  [|A]l; = 1/z:ff,-z-
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Singular Value Decomposition

The term sometimes refers to the compact SVD, a similar decomposition
A=Ux.V/'

in which X, is square diagonal of size r x r, where r < min{m, n} is the
rank of A, and has only the non-zero singular values.

In this variant, the matrix U, is an m X r column orthogonal matrix and
the matrix V, is an n x r column orthogonal matrix such that

Uu'u, =V, v, =1
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Quadratic Forms

Given a square matrix A € R"*" and a vector x € R”, the scalar x" Ax is
called a quadratic form and we have

n n
x Ax = g g ajjX;x;.
i=1 j=1

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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A symmetric matrix A € R"*" is positive definite (PD) if for all
non-zero vectors x € R” holds that x" Ax > 0. This is usually
denoted by A > 0.

A symmetric matrix A € R"*" is positive semi-definite (PSD) if for
all vectors x € R” holds that x" Ax > 0. This is usually denoted by
A>-D0.

A symmetric matrix A € R"*" is negative definite (ND) if for all

non-zero vectors x € R” holds that x" Ax < 0. This is usually
denoted by A < 0.

A symmetric matrix A € R"*" is negative semi-definite (NSD) if for
all vectors x € R" holds that x" Ax < 0. This is usually denoted by
A <0.

A symmetric matrix A € R"™ " is indefinite if it is neither positive
semi-definite nor negative semi-definite i.e., if there exist x1,x, € R"
such that x{ Ax; > 0 and xJ Axy < 0.
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Quadratic Forms

Given a positive-definite matrix A € R"*", we define A-norm as

.
]l = x" Ax.

This measure is useful to analyze the Newton-type optimization methods.
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Matrix Calculus

Suppose that f : R™*" — R is a smooth function that takes as input a

matrix X of size m x n and returns a real value. Then the gradient of f
with respect to X is

rof(X) Of (X)7

Ox11 OX1n

V£(X) = : : : € R™",

of (X) of (X)

L 8Xm1 8an .
We also use the notation
of (X)
oX

to present the gradient with respect to X.
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Some Basic Results

O(f(X) +&(X)) _ 9F(X) | 9g(X)

@ For X € R™*" we have

oX oX oX
otf (X) of(X)
mxn —
Q@ For XeR and t € R, we have X _t(?X :
ATX
@ For A, X € R™" we have M =A.
oX
TAx T
© For A € R™" and x € R", we have =(A+A")x.
T
A
If A is symmetric, we have I X _ 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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