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Course Overview

Homepage: https://elearning.fudan.edu.cn/courses/76158

Recommended reading:
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Course Overview

Optimization
Statistics

Machine
Learning
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Grading Policy

Quiz, 10%

Homework, 30%

Project, 60%
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Optimization Problems

1 Minimization problem

min
x∈X

f (x)

2 Minimax problem

min
x∈X

max
y∈Y

f (x, y)

3 Bilevel problem

min
x∈X

Φ(x) ≜ f (x, y∗(x))

s.t. y∗(x) ∈ argmin
x∈X

g(x, y)
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The Classification of Optimization Problems

The description of the feasible set:

1 unconstrained vs. constrained

2 continuous vs. discrete

The properties of the objective function:

1 linear vs. nonlinear

2 smooth vs. nonsmooth

3 convex vs. nonconvex

The settings in real application:

1 deterministic vs. stochastic

2 non-distributed vs. distributed
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Course Overview

We focus on algorithms and theory for continuous optimization.

Some popular topics in machine learning:

1 convex/nonconvex optimization

2 minimax optimization

3 stochastic optimization

4 distributed optimization
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Should I quit this course?

The course is good for you if you

1 are interested in the mathematics behind optimization

2 use theory to design better optimization algorithms in practice

3 do research in optimization theory

The course may not be good for you if you

1 want to learn how to train deep neural networks

2 are not interested in mathematical principle

Prerequisite course: calculus, linear algebra, probability and statistics.
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Supervised Learning

Prediction problem

1 input a ∈ A: known information

2 output b ∈ B: unknown information

3 goal: to predict b based on a

4 observe training data (a1, b1),. . . ,(an, bn)
5 learning/training:

find prediction function from A to B
model with parameter x that relates a to b
training: learn x that fits the training data
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Examples: Binary Classification

Predict whether the price of a stock will go up or down tomorrow.

1 Create feature vector a ∈ Rd containing information that are
potentially correlated with its price.

2 Desired response variable (unknown)

b =

{
1, if stock goes up,

−1, if goes down.

3 Find a linear predictor x ∈ Rd and we hope that

b =

{
1 if a⊤x ≥ 0,

−1 if a⊤x < 0.
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Examples: Binary Classification

Construct the optimization problem

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(bia
⊤
i x).

We consider the following loss functions.

1 0-1 loss (not continuous):

l(z) =
1− sign(z)

2

2 hinge loss (convex but nonsmooth):

l(z) = max{1− z , 0}

3 logistic loss (convex and smooth):

l(z) = ln(1 + exp(−z))
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Examples: Binary Classification

We typically introduce the regularization term

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(bia
⊤
i x) + λR(x), where λ > 0.

Some popular regularization terms in statistics.
1 ridge regularization (smooth and convex)

R(x) ≜ ∥x∥22
2 Lasso regularization (nonsmooth and convex)

R(x) ≜ ∥x∥1
3 capped-ℓ1 regularization (nonsmooth and nonconvex)

R(x) ≜
d∑

j=1

min{|xj |, α} with α > 0
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Examples: Binary Classification

We can use more general loss function and formulate

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(x; ai , bi ) + λR(x), where λ > 0.

For example, we select l(x; ai , bi ) by the architecture of neural networks.
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Examples: Adversarial Learning

+ .007× =

“gibbon”“panda”
57.7% confidence 99.3 % confidence

We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained pertubation of

η = εsign (∇xJ(θ,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ε = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ε = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y ∈ {−1, 1} with P (y = 1) = σ
(
w>x+ b

)
where

σ(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y∼pdataζ(−y(w>x+ b))

where ζ(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

noise
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Examples: Adversarial Learning

In normal training, we consider

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(x; ai , bi ) + λR(x).

In adversarial training, we allow a perturbed yi for each ai .

It leads to the following minimax optimization problem

min
x∈Rd

max
yi∈Yi ,i=1,...,n

f̃ (x, y1, . . . , yn) ≜
1

n

n∑

i=1

l(x; yi , bi ) + λR(x),

where Yi = {y : ∥y − ai∥ ≤ δ} for some small δ > 0.
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Examples: Generative Adversarial Network (GAN)

Given n data samples a1, . . . , an ∈ Rd from an unknown distribution, GAN
aims to generate additional sample with the same distribution as the
observed samples.

We formulate the minimax optimization problem

min
w∈W

max
θ∈Θ

1

n

n∑

i=1

lnD(θ, ai ) + Ez∼N (0,I)

[
ln(1− D(θ,G (w, z)))

]
.

1 D(θ, ·) is the discriminator outputs probability of a given sample
coming from the real dataset

2 G (w, ·) is the generator that tries to make D(θ, ·) cannot separate
the distributions of G (w; z) and ai
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Examples: Hyperparameter Tuning

Consider the formulation of supervised learning

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

l(x; ai , bi ) + λR(x), where λ > 0.

How to select the value of λ?

Use the validation sets {(â1, b̂1), . . . , (âm, b̂m)}.
1 do grid search on {λ1, . . . , λq}
2 formulate the bilevel optimization
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Examples: Hyperparameter Tuning

The bilevel formulation of hyperparameter tuning

min
λ∈R+

f (λ, x∗(λ)) ≜
1

m

m∑

i=1

l(x∗(λ); âi , b̂i ),

where x∗(λ) ∈ argmin
x∈Rd

g(x) ≜
1

n

n∑

i=1

l(x; ai , bi ) + λR(x).
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Stochastic Optimization

We consider the optimization problem

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

fi (x), where n is extremely large.

Stochastic optimization

1 Accessing the exact information of f (x) is expensive.
2 We design the algorithms by using the mini-batch

1

b

b∑

j=1

fξj (x),

where each ξj is randomly sampled from {1, . . . , n} and b ≪ n.

3 We allow n = +∞, which leads to the online problem

min
x∈Rd

f (x) ≜ Eξ[F (x; ξ)].
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Distributed Optimization

We consider the optimization problem

min
x∈Rd

f (x) ≜
1

n

n∑

i=1

fi (x),

where the information of component functions fi are distributed on
different machines.

Distributed optimization

1 centralized vs. decentralized

2 synchronized vs. asynchronous

3 federated learning
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Convex Optimization

“In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” by R. T. Rockfeller

We start from addressing the convex optimization problem

min
x∈X

f (x),

which requires the basics of linear algebra, topology and convex analysis.
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Notations

We use xi to denote the entry of the n-dimensional vector x such that

x =




x1
x2
...
xn


 ∈ Rn.

We use aij to denote the entry of matrix A with dimension m× n such that

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 ∈ Rm×n.
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Notations

We can also present the matrix as

A =




A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq


 ∈ Rm×n.

if the sub-matrices are compatible with the partition.

We define

0 =




0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ∈ Rm×n, I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ∈ Rn×n.
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Matrix Operations: Transpose

The transpose of a matrix results from flipping the rows and columns.
Given a matrix A ∈ Rm×n such that

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 ∈ Rm×n,

then its transpose, written A⊤ ∈ Rn×m, is an n ×m matrix such that

A⊤ =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn


 ∈ Rn×m.
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Vector Norms

A norm of a vector x ∈ Rn written by ∥x∥, is informally a measure of the
length of the vector. For example, we have the commonly-used Euclidean
norm (or ℓ2 norm),

∥x∥2 =
√
x⊤x =

√√√√
n∑

i=1

x2i .

Formally, a norm is any function Rn → R that satisfies four properties:

1 For all x ∈ Rn, we have ∥x∥ ≥ 0 (non-negativity).

2 ∥x∥ = 0 if and only if x = 0 (definiteness).

3 For all x ∈ Rn and t ∈ R, we have ∥tx∥ = |t| ∥x∥ (homogeneity).

4 For all x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).
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Addition/Subtraction

If A ∈ Rm×n and B ∈ Rm×n are two matrices of the same order, then

A+ B =




a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b1n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


 ∈ Rm×n

and

A− B =




a11 − b11 a12 − b12 · · · a1n − b1n
a21 − b21 a22 − b22 · · · a2n − b1n

...
...

. . .
...

am1 − bm1 am2 − bm2 · · · amn − bmn


 ∈ Rm×n.
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Multiplication

The product of A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ Rm×p,

where

C =




c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
. . .

...
cp1 cp2 · · · cpq


 ∈ Rm×p.

and cij =
∑n

k=1 aikbkj .
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Trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A), is the sum of diagonal
elements in the matrix:

tr(A) =
n∑

i=1

aii .

The trace has the following properties

1 For A ∈ Rn×n, we have tr(A) = tr
(
A⊤).

2 For A ∈ Rn×n, B ∈ Rn×n, c1 ∈ R and c2 ∈ R, we have

tr(c1A+ c2B) = c1tr(A) + c2tr(B).

3 For A and B such that AB is square, tr(AB) = tr(BA).

4 For A, B and C such that ABC is square, we have

tr(ABC) = tr(BCA) = tr(CAB).
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Inverse

The inverse of a square matrix A ∈ Rn×n is denoted by A−1 and is the
unique matrix such that

AA−1 = I = A−1A.

We say that A is invertible or non-singular if A−1 exists and non-invertible
or singular otherwise.
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Inverse

If all the necessary inverse exist, we have

1 (A−1)−1 = A

2 (cA)−1 = c−1A−1

3 (A−1)⊤ = (A⊤)−1

4 (AB)−1 = B−1A−1

5 A−1 = A⊤ if A⊤A = I

For A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×p and D ∈ Rp×n, we have

(A+ BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1

if A and A+ BCD are non-singular.
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Vector Norms

There are some examples for x ∈ Rn:

1 The ℓ1-norm: ∥x∥1 =
∑n

i=1 |xi |
2 The ℓ2-norm: ∥x∥2 =

√∑n
i=1 x

2
i

3 The ℓ∞-norm: ∥x∥∞ = maxi |xi |
4 The ℓp-norm: ∥x∥p = (

∑n
i=1 |xi |p)

1/p for p > 1
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Matrix Norms

Given vector norm ∥·∥, the corresponding induced matrix norm of
A ∈ Rm×n is defined as

∥A∥ = sup
x∈Rn,x̸=0

∥Ax∥
∥x∥ = sup

x∈Rn,∥x∥=1
∥Ax∥ .

For example, we define

∥A∥1 = sup
x∈Rn,∥x∥1=1

∥Ax∥1

and

∥A∥∞ = sup
x∈Rn,∥x∥∞=1

∥Ax∥∞ .
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Matrix Norms

General matrix norm norm is any function Rm×n → R that satisfies

1 For all A ∈ Rm×n, we have ∥A∥ ≥ 0 (non-negativity).

2 ∥A∥ = 0 if and only if A = 0 (definiteness).

3 For all A ∈ Rm×n and t ∈ R, we have ∥tA∥ = |t| ∥A∥ (homogeneity).

4 For all A,B ∈ Rm×n, we have ∥A+ B∥ ≤ ∥A∥+ ∥B∥
(triangle inequality).

Some matrix norm cannot be induced from vector norm, such as

∥A∥F =

√∑

i ,j

a2ij .
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Singular Value Decomposition

The singular value decomposition (SVD) of A ∈ Rm×n matrix is

A = UΣV⊤,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is rectangular diagonal matrix with
non-negative real numbers on the diagonal and V ∈ Rn×n is orthogonal.

1 We use σi to present the (i , i)-th entry of Σ, which is called the singular
value of A.

2 We typically let the singular values σi be in non-increasing order.

3 We can verify

∥A∥2 = σ1 and ∥A∥F =

√∑

i

σ2
i .
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Singular Value Decomposition

The term sometimes refers to the compact SVD, a similar decomposition

A = UrΣrV
⊤
r

in which Σr is square diagonal of size r × r , where r ≤ min{m, n} is the
rank of A, and has only the non-zero singular values.

In this variant, the matrix Ur is an m × r column orthogonal matrix and
the matrix Vr is an n × r column orthogonal matrix such that

U⊤
r Ur = V⊤

r Vr = I.
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar x⊤Ax is
called a quadratic form and we have

x⊤Ax =
n∑

i=1

n∑

j=1

aijxixj .

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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Definiteness

1 A symmetric matrix A ∈ Rn×n is positive definite (PD) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax > 0. This is usually
denoted by A ≻ 0.

2 A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≥ 0. This is usually denoted by
A ⪰ 0.

3 A symmetric matrix A ∈ Rn×n is negative definite (ND) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax < 0. This is usually
denoted by A ≺ 0.

4 A symmetric matrix A ∈ Rn×n is negative semi-definite (NSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≤ 0. This is usually denoted by
A ⪯ 0.

5 A symmetric matrix A ∈ Rn×n is indefinite if it is neither positive
semi-definite nor negative semi-definite i.e., if there exist x1, x2 ∈ Rn

such that x⊤1 Ax1 > 0 and x⊤2 Ax2 < 0.
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Quadratic Forms

Given a positive-definite matrix A ∈ Rn×n, we define A-norm as

∥x∥A = x⊤Ax.

This measure is useful to analyze the Newton-type optimization methods.
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Matrix Calculus

Suppose that f : Rm×n → R is a smooth function that takes as input a
matrix X of size m × n and returns a real value. Then the gradient of f
with respect to X is

∇f (X) =




∂f (X)

∂x11
· · · ∂f (X)

∂x1n
...

. . .
...

∂f (X)

∂xm1
· · · ∂f (X)

∂xmn



∈ Rm×n.

We also use the notation

∂f (X)

∂X

to present the gradient with respect to X.
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Some Basic Results

1 For X ∈ Rm×n, we have
∂(f (X) + g(X))

∂X
=

∂f (X)

∂X
+

∂g(X)

∂X
.

2 For X ∈ Rm×n and t ∈ R, we have
∂tf (X)

∂X
= t

∂f (X)

∂X
.

3 For A,X ∈ Rm×n, we have
∂tr(A⊤X)

∂X
= A.

4 For A ∈ Rn×n and x ∈ Rn, we have
∂x⊤Ax

∂x
= (A+ A⊤)x.

If A is symmetric, we have
∂x⊤Ax

∂x
= 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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