Multivariate Statistical Analysis

Lecture 07

Fudan University

luoluo@fudan.edu.cn

[Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Consistency](#page-18-0)

1 [Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Consistency](#page-18-0)

An estimator **t** of a parameter vector θ is unbiased if and only if

 $\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}.$

For the estimators obtain from MLE for normal distribution,

- **1** the vector $\hat{\mu}$ is an unbiased estimator of μ ;
- 2 the matrix $\hat{\Sigma}$ is a biased estimator of Σ .

[Unbiasedness](#page-2-0)

2 [Sufficiency](#page-4-0)

[Efficiency](#page-9-0)

[Consistency](#page-18-0)

Sufficiency

A statistic $t(v)$ is sufficient for a family of distributions of random variable y with parameter θ , if the conditional distribution of **y** given $t(y) = t_0$ does not depend on θ.

1 The statistic **t** gives as much information about θ as the entire sample **y**.

² For the MLE of normal distribution, we check the sufficiency by taking

$$
\theta = \{\mu, \Sigma\}, \quad y = \{x_1, \ldots, x_N\} \quad \text{and} \quad t(y) = \{\bar{x}, S\}.
$$

Theorem

A statistic $t(y)$ is sufficient for θ if and only if the density $f(y; \theta)$ can be factored as

$$
f(\mathbf{y};\boldsymbol{\theta})=g(\mathbf{t}(\mathbf{y});\boldsymbol{\theta})h(\mathbf{y})
$$

where $g(t(y); \theta)$ and $h(y)$ are nonnegative and $h(y)$ does not depend on θ .

[Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Consistency](#page-18-0)

A family of distributions of statistics **t** indexed by θ is complete if for every real-valued function $g(t)$, we have

$$
\mathbb{E}[g(\mathbf{t})]\equiv 0
$$

identically in θ implies $g(t) = 0$ except for a set of **t** of probability 0 for every θ .

Theorem

The sufficient set of statistics \bar{x} , S is complete for μ , Σ when the sample is drawn from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Sketch of the proof:

• We have
$$
N\hat{\Sigma} = \sum_{\alpha=1}^{N-1} z_{\alpha} z_{\alpha}^{\top}
$$
, where $z_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta} x_{\beta}$ and

$$
\mathbf{B} = \begin{bmatrix} \times & \cdots & \times \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \cdots & \frac{1}{\sqrt{N}} \end{bmatrix}
$$

2 The condition $\mathbb{E}[g(\bar{x}, nS)] \equiv 0$ implies the Laplace transform of

$$
g\left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^\top\right) h(\bar{\mathbf{x}}, \mathbf{B})
$$

is zero, where ${\bf B}=\sum_{\alpha=1}^{N-1}{\bf z}_\alpha{\bf z}_\alpha^\top + N\bar{\bf x}\bar{\bf x}^\top$ and $h(\bar{\bf x},{\bf B})$ is the joint density of \bar{x} and B .

[Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Consistency](#page-18-0)

If a p -dimensional random vector y has mean vector

$$
\nu = \mathbb{E}[\mathbf{y}]
$$

and covariance matrix

$$
\Psi = \mathbb{E}\left[(\mathbf{y} - \boldsymbol{\nu})(\mathbf{y} - \boldsymbol{\nu})^{\top} \right] \succ \mathbf{0},
$$

then

$$
\left\{\mathbf{z}:(\mathbf{z}-\boldsymbol{\nu})^{\top}\mathbf{\Psi}^{-1}(\mathbf{z}-\boldsymbol{\nu})=p+2\right\}
$$

is called the concentration ellipsoid of y.

Let θ be a vector of p parameters in a distribution, and let **t** be a vector of unbiased estimators (that is, $\mathbb{E}[\mathbf{t}] = \theta$) based on N observations from that distribution with covariance matrix Ψ.

Then the ellipsoid

$$
\left\{\mathbf{z}:(\mathbf{z}-\boldsymbol{\theta})^{\top}\mathbb{E}\left[N\cdot\frac{\partial\ln f(\mathbf{x},\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\left(\frac{\partial\ln f(\mathbf{x},\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\right)^{\top}\right](\mathbf{z}-\boldsymbol{\theta})=p+2\right\}
$$

lies entirely within the ellipsoid of concentration of **t**, where f is the density of the distribution with respect to the components of θ .

The ellipsoid

$$
\left\{\mathbf{z}:(\mathbf{z}-\boldsymbol{\theta})^{\top}\mathbb{E}\left[N\cdot\frac{\partial\ln f(\mathbf{x},\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\left(\frac{\partial\ln f(\mathbf{x},\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\right)^{\top}\right](\mathbf{z}-\boldsymbol{\theta})=p+2\right\}
$$

lies entirely within the ellipsoid of concentration of t

$$
\left\{\mathbf{z}: (\mathbf{z}-\boldsymbol{\theta})^{\top} \left(\mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right]\right)^{-1}(\mathbf{z}-\boldsymbol{\theta})=p+2\right\},\right.
$$

that is

$$
\left(N\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} \preceq \mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right].
$$

The ellipsoid

$$
\left\{\mathbf{z}: (\mathbf{z}-\boldsymbol{\theta})^{\top} \mathbb{E}\left[N \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right] (\mathbf{z}-\boldsymbol{\theta}) = p+2\right\}
$$
(1)

lies entirely within the ellipsoid of concentration of t

$$
\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta}) (\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}.
$$
 (2)

- \bullet If the ellipsoid [\(1\)](#page-13-0) and the ellipsoid [\(2\)](#page-13-1) are identical, then the unbiased estimator t is said to be efficient.
- **2** In general, the ratio of the volume of ellipsoid [\(1\)](#page-13-0) to that of the ellipsoid (2) defines the efficiency of the unbiased estimator **t**.

Theorem

Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$
\mathsf{N}\mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right] \succeq \left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1},
$$

where $\mathbb{E}[\mathbf{t}] = \theta$ and $f(\mathbf{x}, \theta)$ is the density of the distribution with respect to the components of θ .

• Let
$$
\mathbf{X} = \{x_1, ..., x_N\}
$$
 and $\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \theta)}{\partial \theta}$, where *g* is the joint density on *N* samples.

2 For unbiased estimator **t** of θ , we have $Cov[\mathbf{t}, \mathbf{s}] = \mathbf{l}$.

We define the Fisher information matrix as

$$
\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right].
$$

Under the regularity condition, we have

$$
\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right] = -\mathbb{E}\left[\frac{\partial^2 \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}\partial \boldsymbol{\theta}^{\top}}\right].
$$

Consider the case of the multivariate normal distribution.

- **1** If $\theta = \mu$, then \bar{x} is efficient.
- **2** If $\theta = {\mu, \Sigma}$, then ${\bar{x}, S}$ has efficiency

$$
\left(\frac{N-1}{N}\right)^{p(p+1)/2},
$$

which converges to 1 if $N \to +\infty$.

Check that Solutions to Ax=0
always que a Subspace
in R If A v=0 and AW=0 then A (y+y)⁼⁰ <u>生苦短</u> , 证明就免了吧 We only live so long, we just skip that proof.

[Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Efficiency](#page-9-0)

5 [Consistency](#page-18-0)

A sequence of random vectors $\mathbf{t}_n = [t_{1n}, \ldots, t_{pn}]^\top$ for $n = 1, 2, \ldots,$ is a consistent estimator of $\boldsymbol{\theta} = [\theta_1, \dots, \theta_p]^\top$ if

$$
\lim_{n\to+\infty}t_{in}=\theta_i
$$

for $i = 1, \ldots, p$.

The definition of convergence in probability says

$$
\lim_{n\to+\infty}\Pr\left(|t_{in}-\theta_i|<\epsilon\right)=1
$$

holds for any $\epsilon > 0$.

The weak law of large numbers states that the sample means converges in probability towards the expected value.

For sample $x_1, x_2 \ldots$ from $\mathcal{N}_p(\mu, \Sigma)$, the estimators

$$
\bar{\mathbf{x}}_N = \frac{1}{N} \sum_{\alpha=1}^N \mathbf{x}_{\alpha} \qquad \text{and} \qquad \mathbf{S}_N = \frac{1}{N-1} \sum_{\alpha=1}^N (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_N)(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_N)^{\top}
$$

are consistent estimators of μ and Σ , respectively.

[Unbiasedness](#page-2-0)

[Sufficiency](#page-4-0)

[Efficiency](#page-9-0)

[Consistency](#page-18-0)

Let x_1, \ldots, x_n be independent and identically distributed random variables with the same arbitrary distribution, mean μ , and variance σ^2 .

Let $\bar{x}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n x_i$, then the random variable

$$
z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{x}_n - \mu}{\sigma} \right)
$$

is a standard normal distribution.

What about multivariate case?

Multivariate central limit theorem.

Theorem

Let p-component vectors y_1, y_2, \ldots be i.i.d with means $\mathbb{E}[y_\alpha] = \nu$ and covariance matrices $\mathbb{E}[(\mathsf{y}_\alpha-\nu)(\mathsf{y}_\alpha-\nu)^\top]=\textsf{T}$. Then the limiting distribution of

$$
\frac{1}{\sqrt{n}}\sum_{\alpha=1}^n(\textbf{y}_{\alpha}-\boldsymbol{\nu})
$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

Theorem

Let ${F_i(\mathbf{x})}$ be a sequence of cdfs, and let ${\phi_i(\mathbf{t})}$ be the sequence of corresponding characteristic functions. A necessary and sufficient condition for $F_i(\mathbf{x})$ to converge to a cdf $F(\mathbf{x})$ is that, for every **t**, $\phi_i(\mathbf{t})$ converges to a limit $\phi(\mathbf{t})$ that is continuous at $\mathbf{t} = \mathbf{0}$. When this condition is satisfied, the limit $\phi(\mathbf{t})$ is identical with the characteristic function of the limiting distribution $F(\mathbf{x})$.