Multivariate Statistical Analysis

Lecture 05

Fudan University

luoluo@fudan.edu.cn

2 Conditional Distribution

In previous section, we focus on non-singular normal normally distributed variate $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$ whose density function is

$$n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right).$$

What about the case of singular Σ ?

General Linear Transformation

$$oldsymbol{0}$$
 Let $\mathbf{x}\sim\mathcal{N}_{
ho}(oldsymbol{\mu},oldsymbol{\Sigma})$, with $oldsymbol{\Sigma}\succoldsymbol{0}$. Then

$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$ for non-singular $\mathbf{C} \in \mathbb{R}^{p \times p}$.

2 Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

 $\mathbf{y} = \mathbf{C}\mathbf{x}$

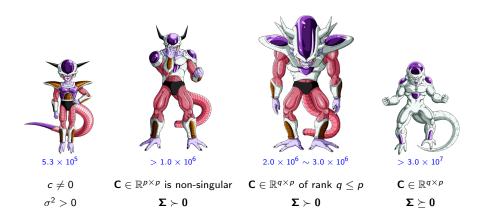
is distributed according to $\mathcal{N}_q(\mathbf{C}\boldsymbol{\mu},\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$ for $\mathbf{C}\in\mathbb{R}^{q\times p}$ of rank $q\leq p$.

3 Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

is distributed according to $\mathcal{N}_q(\mathbf{C}\boldsymbol{\mu},\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$ for any $\mathbf{C}\in\mathbb{R}^{q\times p}$.

Transformation



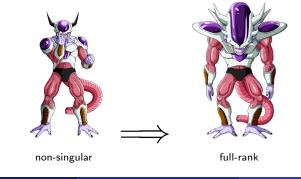
General Linear Transformation

Theorem

Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$\mathbf{z} = \mathbf{D}\mathbf{x}$

is distributed according to $\mathcal{N}_q(\mathbf{D}\mu,\mathbf{D}\mathbf{\Sigma}\mathbf{D}^{\top})$ for $\mathbf{D} \in \mathbb{R}^{q \times p}$ of rank $q \leq p$.



Lecture 05 (Fudan University)

DATA 130044

General Linear Transformation

Theorem

Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$\mathbf{z} = \mathbf{D}\mathbf{x}$

is distributed according to $\mathcal{N}_q(\mathsf{D}\mu,\mathsf{D}\Sigma\mathsf{D}^{\top})$ for any $\mathsf{D}\in\mathbb{R}^{q imes p}$.

understand the singular normal distribution

no limitation

full-rank

Singular normal distribution:

- The mass is concentrated on a given lower dimensional set.
- The probability associated with any set that does not intersecting the given low-dimensional set is 0.

For example, consider that

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right).$$

() Probability of any set that does not intersecting the x_2 -axis is 0.

- 2 The measure of x_2 -axis in the space of \mathbb{R}^2 is zero.
- **③** The random vector **x** has no density, but its distribution exists.

Suppose that $\mathbf{y} \sim \mathcal{N}_q(\boldsymbol{\nu}, \mathbf{T})$, $\mathbf{A} \in \mathbb{R}^{p \times q}$ with p > q and $\boldsymbol{\lambda} \in \mathbb{R}^p$; then we say that

$$\mathsf{x}=\mathsf{A}\mathsf{y}+oldsymbol{\lambda}$$

has a singular (degenerate) normal distribution in *p*-space.

We have
$$\mu = \mathbb{E}[\mathbf{x}] = \mathbf{A}\nu + \lambda$$
 and
 $\mu = \mathbb{E}[\mathbf{x}] = \mathbf{A}\nu + \lambda$ and $\boldsymbol{\Sigma} = \operatorname{Cov}(\mathbf{x}) = \mathbf{A}\mathbf{T}\mathbf{A}^{\top}$

$$\mu = \mathbb{E}[x] = A\nu + x$$
 and $\Sigma = \mathrm{Cov}(x) = ATA$

The matrix Σ is singular and we cannot write density for x.

Now we give a formal definition of a normal distribution that includes the singular distribution.

Definition

A *p*-dimensional random vector **x** with $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{Cov}[\mathbf{x}] = \Sigma$ is said to be normally distributed if there is a transformation

$$\mathbf{x} = \mathbf{A}\mathbf{y} + \mathbf{\lambda},$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}$, $\lambda \in \mathbb{R}^{p}$, *r* is the rank of $\boldsymbol{\Sigma}$ and \mathbf{y} has *r*-dimensional non-singular normal distribution, e.g., $\mathbf{y} \sim \mathcal{N}_r(\nu, \mathbf{T})$ with $\mathbf{T} \succ \mathbf{0}$.

We also use the notation $\mathcal{N}_{\rho}(\mu, \Sigma)$ even if Σ is singular.

If $\boldsymbol{\Sigma}$ has rank p, we can take $\boldsymbol{\mathsf{A}}=\boldsymbol{\mathsf{I}}$ and $\boldsymbol{\lambda}=\boldsymbol{\mathsf{0}}.$

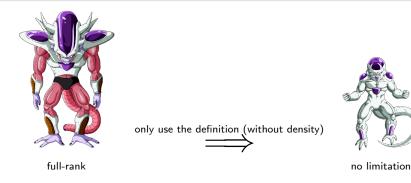
General Linear Transformation

Theorem

Let $x \sim \mathcal{N}_{\rho}(\mu, \pmb{\Sigma}).$ Then

$\mathbf{z} = \mathbf{D}\mathbf{x}$

is distributed according to $\mathcal{N}_q(\mathsf{D}\mu,\mathsf{D}\Sigma\mathsf{D}^{\top})$ for any $\mathsf{D}\in\mathbb{R}^{q imes p}$.



Theorem

Let **U** be a $d \times k$ random matrix ($k \leq d$) and each of its entry is independent distributed according to $\mathcal{N}(0,1)$, then it holds that

$$\mathbb{E}\left[\mathsf{U}(\mathsf{U}^{\top}\mathsf{U})^{-1}\mathsf{U}^{\top}\right] = \frac{k}{d}\mathsf{I}_{d}.$$

Lemma

Assume $\mathbf{P} \in \mathbb{R}^{d \times k}$ is column orthonormal $(k \leq d)$ and $\mathbf{v} \sim \mathcal{N}_d(\mathbf{0}, \mathbf{P}\mathbf{P}^{\top})$ is a d-dimensional multivariate normal distributed vector. Then we have

$$\mathbb{E}\left[\frac{\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}}\right] = \frac{1}{k}\mathbf{P}\mathbf{P}^{\top}.$$

1 Singular Normal Distributions

Conditional Distribution

Let **x** be distributed according to $\mathcal{N}_{\rho}(\mu, \Sigma)$ with $\Sigma \succ 0$.

We partition

$$\begin{split} \mathbf{x} &= \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} & \text{with } \mathbf{x}^{(1)} \in \mathbb{R}^q \text{ and } \mathbf{x}^{(2)} \in \mathbb{R}^{p-q}, \\ \boldsymbol{\mu} &= \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} & \text{with } \boldsymbol{\mu}^{(1)} \in \mathbb{R}^q \text{ and } \boldsymbol{\mu}^{(2)} \in \mathbb{R}^{p-q}, \end{split}$$

and

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

with $\Sigma_{11} \in \mathbb{R}^{q \times q}$, $\Sigma_{12} \in \mathbb{R}^{q \times (p-q)}$, $\Sigma_{21} \in \mathbb{R}^{(p-q) \times q}$ and $\Sigma_{22} \in \mathbb{R}^{(p-q) \times (p-q)}$.

Conditional Distribution

The conditional density of $\boldsymbol{x}^{(1)}$ given that $\boldsymbol{x}^{(2)}$ is

$$f(\mathbf{x}^{(1)} | \mathbf{x}^{(2)}) = \frac{f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})}{f(\mathbf{x}^{(2)})}$$

= $\frac{1}{\sqrt{(2\pi)^q \det(\mathbf{\Sigma}_{11.2})}} \exp\left(-\frac{1}{2} (\mathbf{x}_{11.2} - \boldsymbol{\mu}_{11.2})^\top \mathbf{\Sigma}_{11.2}^{-1} (\mathbf{x}_{11.2} - \boldsymbol{\mu}_{11.2})\right),$

where

and

$$\mathbf{x}_{11.2} = \mathbf{x}^{(1)} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{x}^{(2)}, \qquad \mu_{11.2} = \mu^{(1)} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mu^{(2)}$$

$$\boldsymbol{\Sigma}_{11.2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}.$$

Hence, the conditional density of $\boldsymbol{x}^{(1)}$ given that $\boldsymbol{x}^{(2)}$ is

$$\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)} \sim \mathcal{N}\left(\mu^{(1)} + \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - \mu^{(2)}), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}
ight)$$

1 Singular Normal Distributions

2 Conditional Distribution

The characteristic function of a p-dimensional random vector \mathbf{x} is

$$\phi(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{ op}\mathbf{x})
ight]$$

defined for every real vector $\mathbf{t} \in \mathbb{R}^{p}$.

For the complex-valued function g(z) be written as

$$g(z)=g_1(z)+\mathrm{i}\,g_2(z),$$

where $g_1(z)$ and $g_2(z)$ are real-valued, the expected value of g(z) is

$$\mathbb{E}[g(z)] = \mathbb{E}[g_1(z)] + \mathrm{i}\,\mathbb{E}[g_2(z)].$$

Theorem

If the p-dimensional random vector **x** has the density $f(\mathbf{x})$ and the characteristic function $\phi(\mathbf{t})$, then

$$f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp(-\mathrm{i} \mathbf{t}^\top \mathbf{x}) \, \phi(\mathbf{t}) \, \mathrm{d} t_1 \dots \mathrm{d} t_p.$$

- If the random variable have a density, the characteristic function determines the density function uniquely.
- If the random variable does not have a density, the characteristic function uniquely defines the probability of any continuity interval.

Theorem

The characteristic function of x distributed according to $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}
ight).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

Sketch of the proof:

- The characteristic function of $\mathbf{y} \sim \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{I})$ is $\phi_0(\mathbf{t}) = \exp(-\mathbf{t}^{\top}\mathbf{t}/2)$.
- **2** For $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we have $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$ such that $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$.
- **③** Using $\phi_0(\mathbf{t})$ to present the characteristic function of $\mathbf{x} \sim \mathcal{N}_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Characteristic Function

Theorem

The characteristic function of x distributed according to $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}
ight).$$

for every $\mathbf{t} \in \mathbb{R}^{p}$.

This theorem directly implies $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ leads to $\mathbf{C}\mathbf{x} \sim \mathcal{N}(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$.

DATA 130044

Theorem

If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

In other words, if the p-dimensional random vector ${\bf y}$ leads to the univariate random variable

u⊤y

is normally distributed for any fixed $\mathbf{u} \in \mathbb{R}^{p}$, then \mathbf{y} is normally distributed.

This is another definition of multivariate normal distribution.

Example

Theorem

We let

$$\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}), \qquad \mathbf{y} \sim \mathcal{N}_{p}(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}) \qquad \textit{and} \qquad \mathbf{z} = \mathbf{x} + \mathbf{y}.$$

Suppose that \mathbf{x} and \mathbf{y} are independent, then we have

$$\mathsf{z} \sim \mathcal{N}_{p}(oldsymbol{\mu}_{1} + oldsymbol{\mu}_{2}, oldsymbol{\Sigma}_{1} + oldsymbol{\Sigma}_{2}).$$

DATA 130044