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Random Vectors and Matrices

1 A random matrix (vector) is a matrix (vector) whose elements are
random variables.

2 The expected value of a random matrix (or vector) is the matrix
(vector) consisting of the expected values of each of its elements.

3 Let X be an m × n random matrix, then its expected value, denoted
by E[X], is the m × n matrix of numbers (if they exist)

E[X] =


E[x11] E[x12] . . . E[x1n]
E[x21] E[x22] . . . E[x2n]

...
...

. . .
...

E[xm1] E[xm2] . . . E[xmn]

 .
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Expectation of Random Matrices

Let X and Y be random matrices of the same dimension, and let A and B
be conformable matrices of constants. Then we have

E[X+ Y] = E[X] + E[Y]

and

E[AXB] = AE[X]B.
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Random Vector and Covariance Matrix

For random vector x =
[
x1, . . . , xp

]⊤
, we denote µ = E[x].

The expected value of the random matrix (x− µ)(x− µ)⊤ is

Cov[x] = E
[
(x− µ)(x− µ)⊤

]
,

the covariance or covariance matrix of x.

1 The i-th diagonal element of this matrix, E
[
(xi − µi )

2
]
, is the

variance of xi .

2 The i , j-th off-diagonal element (i ̸= j), E[(xi − µi )(xj − µj)] is the
covariance of xi and xj .

3 We have Cov[x] = E
[
xx⊤

]
− µµ⊤.
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Random Vector and Covariance Matrix

Theorem

Let y = Dx+ f, where

1 D is an n × p constant matrix,

2 x is a p-dimensional random vector,

3 and f is a n-dimensional constant vector.

Then we have

E[y] = DE[x] + f and Cov[y] = Cov[Dx] = DCov[x]D⊤.
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Example

Let x = [x1, x2]
⊤ be a random vector with

E[x] =
[
µ1

µ2

]
and Cov[x] =

[
σ11 σ12
σ21 σ22

]
.

Let z = [z1, z2] such that z1 = x1 − x2 and z2 = x1 + x2.

1 Find the E[z] and Cov[z].

2 Find the condition that leads to z1 and z2 be uncorrelated.
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Correlation

For random vector x = [x1, . . . , xp]
⊤, we write its covariance as

Cov[x] = Σ =

σ11 . . . σ1p
...

. . .
...

σp1 . . . σpp

 .

The correlation coefficient ρij is defined as

ρij =
σij√
σiiσjj

,

which measures linear association between xi and xj .
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Correlation

The population correlation matrix of x is defined as

ρ =


σ11√
σ11σ11

. . .
σ1p√
σ11σpp

...
. . .

...
σp1√
σppσ11

. . .
σpp√
σppσpp



=

 1 . . . ρ1p
...

. . .
...

ρp1 . . . 1

 .

Lecture 02 (Fudan University) DATA 130044 luoluo@fudan.edu.cn 9 / 24



Transformation of Variables

Let the density of p-dimensional random vector x = [x1, . . . , xp]
⊤ be f (x).

Consider the p-dimensional random vector y = [y1, . . . , yp]
⊤ such that yi = ui (x)

for i = 1, . . . , p. Let the density function of y be g(y).

Assume the transformation u(x) = [u1(x), . . . , up(x)]⊤ : Rp → Rp from the space
of x to the space of y is smooth and one-to-one.

Then we have f (x) = g(u(x))| det(J(x))| where

J(x) =



∂u1(x)

∂x1

∂u1(x)

x2
· · · ∂u1(x)

∂xp

∂u2(x)

∂x1

∂u2(x)

∂x2
· · · ∂u2(x)

∂xp
...

...
. . .

...
∂up(x)

∂x1

∂up(x)

∂x2
· · · ∂up(x)

∂xp


.
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Transformation of Variables

Similarly, we also have g(y) = f (u−1(y))| det(J−1(y))| where

J−1(y) =



∂u−1
1 (y)

∂y1

∂u−1
1 (y)

∂y2
· · ·

∂u−1
1 (y)

∂yp

∂u−1
2 (y)

∂y1

∂u−1
2 (y)

∂y2
· · ·

∂u−1
2 (y)

∂yp
...

...
. . .

...
∂u−1

p (y)

∂y1

∂u−1
p (y)

∂y2
· · ·

∂u−1
p (y)

∂yp


.
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Random Samples

We use the notation xαj to indicate the value of the α-th variable that is observed
on the j-th item, or trial.

We display the N measurements on p variables as the N × p matrix

X =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p

...
...

. . .
...

. . .
...

xα1 xα2 . . . xαj . . . xαp

...
...

. . .
...

. . .
...

xN1 xN2 . . . xNj . . . xNp


=



x⊤1

x⊤2
...

x⊤i
...

x⊤N


.

We mainly focus on the following case.

1 The random p variables in a single trial, such as xi = [xi1, . . . , xip]
⊤ will

usually be correlated, and the ones from different trials be independent.

It may not hold when the variables are likely to drift over time.
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Sample Mean and Covariance

Let x1, . . . , xN be a random sample from a joint distribution that has
mean vector µ, and covariance matrix Σ. Then the sample means

µ̂ = x̄ =
1

N

N∑
α=1

xα

is an unbiased estimator of µ, and its covariance matrix is

Cov[x̄] =
1

N
Σ.

However, the matrix

Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤

is a biased estimator of Σ.
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Sample Covariance

We define the sample (variance-covariance) covariance matrix as

S =
N

N − 1
Σ̂ =

1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)⊤, (1)

which is an unbiased estimator of Σ.

Let 1N = [1, . . . , 1]⊤ ∈ RN , then we have

S =
1

N − 1
X⊤

(
IN − 1

N
1N1

⊤
N

)
X (2)

=
1

N − 1

(
X⊤X− 1

N
X⊤1N1

⊤
NX

)
. (3)

It provides a more efficient implementation.
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Sample Correlation

Given sample covariance matrix

S =


s11 . . . s1p
...

. . .
...

sp1 . . . spp

 ∈ Rp×p,

we define the sample correlation matrix as

R =


r11 . . . r1p
...

. . .
...

rp1 . . . rpp

 ∈ Rp×p,

where rij =
sij√
sii
√
sjj

.
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Geometrical Interpretation

We display p-dimensional random vectors x1, . . . , xN as follows

X =


x11 . . . x1p

...
. . .

...

xN1 . . . xNp

 =


x⊤1
...

x⊤N

 =
[
y1 . . . yp

]
∈ RN×p.

We denote x̄ =
[
x̄1 . . . x̄p

]⊤
and di = yi − x̄i1N .

1 The projection of yi onto the equal angular vector 1N is the vector x̄i1N .

2 The information comprising S is obtained from the deviation vectors {di}.
3 The sample correlation rij is the cosine of the angle between di and dj .
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Sample Covariance

When all variables are observed, the variation is described by the sample
covariance matrix

S =


s11 s12 . . . s1p
s21 s22 . . . s2p
...

...
. . .

...
sp1 sp2 . . . spp

 ∈ Rp×p,

where sij =
1

N − 1

N∑
α=1

(xαi − x̄i )(xαj − x̄j).

The sample covariance matrix contains p variances and p(p − 1)/2
potentially different covariances.
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Generalized Sample Variance

The value of det(S) reduces to usual sample variance when p = 1.

This determinant is called the generalized sample variance:

generalized sample variance = det(S).
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Geometrical Interpretation: Parallelotope

Theorem

Define V = [v1, . . . , vp] ∈ RN×p and let

Vol(v1, . . . , vp)

be the p-dimensional volume of the parallelotope with v1, . . . , vp ∈ RN as
principal edges (N ≥ p), then(

Vol(v1, . . . , vp)
)2

= det(V⊤V).

For di = yi − x̄i1N , we have

det(S) = (N − 1)−p
(
Vol(d1, . . . ,dp)

)2
.
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Geometrical Interpretation: ParallelotopeGeneralized Variance 125 
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Figure l.6 (a) "Large" generalized sample variance for p = 3. 
(b) "Small" generaliz.ed sample variance for p = 3. 

If we compare (3-14) with (3-13), we see that 

/S/ = (area)2/(n - 1)2 

Assumingnowthat IS/= (n - 1)-(p-l)(volume)2 holdsforthevolumegener
ated inn space by the p - 1 deviation vectors d1, d2, ... , dp-I • we can establish the 
following general result for p deviation vectors by induction (see [1], p. 266): 

Generalized sample variance = Is I = (n - 1r P(volume) 2 (3-15) 

Equation (3-15) says that the generalized sample variance, for a fixed set of data, is 
proportional to the square of the volume generated by the p deviation vectors

3 

d1 = Y1 - :X1l, d2 = y2 - x21, ... ,dP = Yp - xPl. Figures 3.6(a) and (b) show 
trapezoidal regions, generated by p = 3 residual vectors, corresponding to "large" 
and "small" generalized variances. 

For a fixed sample size, it is clear from the geometry that volume, or IS I, will 
increase when the length of any d; = Yi - :X;l (or ~) is increased. In addition, 
volume will increase if the residual vectors of fixed length are moved until they are 
at right angles to one another, as in figure 3.6(a). On the other hand, the volume, 
or I S /, will be small if just one of the S;; is small or one of the deviation vectors lies 
nearly in the (hyper) plane formed by the others, or both. In the second case, the 
trapezoid has very little height above the plane. This is the situation in Figure 3 .6(b ), 
where d3 lies nearly in the plane formed by d1 and d2. 

3 If generalized variance is defined in terms of the sample covariance matrix s. = [ ( n - 1 )/n JS, then, 

using Result 2A.11,IS.I = l[(n - 1)/n]IpSI = l[{n -1)/n]IpllSI = [(n - 1)/nJPISI- Consequently, 

using (3-15), we can also write the following: Generalized sample variance = IS. I = n-P(volume)2. 
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Geometrical Interpretation: Hyperellipsoid

The coordinates

x = [x1, x2, . . . , xp]
⊤

of the points a constant distance c > 0 from x̄ satisfy (suppose S ≻ 0)

(x− x̄)⊤S−1(x− x̄) = c2,

which defines hyperellipsoid centered at x̄.

The volume of this hyperellipsoid is

2πp/2

pΓ(p/2)
· cp(det(S))1/2,

where

Γ(p) =

∫ ∞

0
tp−1 exp(−t) dt.
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Generalized Sample Variance is Zero

The generalized variance is zero when, and only when, at least one of

{d1, . . . ,dp}

lies in the hyperplane formed by all linear combinations of the others.

That is, the columns of the matrix of deviations

X− 1N x̄
⊤ =

(x1 − x̄)⊤

...
(xN − x̄)⊤

 =
[
y1 − x̄11N . . . yp − x̄p1N

]
=
[
d1 . . . dp

]
∈ RN×p

are linearly dependent.
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Generalized Sample Variance Determined by Correlation

We can also define generalized variance by

det(R),

where R is the sample correlation matrix

R =


r11 . . . r1p
...

. . .
...

rp1 . . . rpp

 ∈ Rp×p,

where rij =
sij√
sii
√
sjj

.

It holds that

det(S) = det(R)

p∏
i=1

sii .
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Total Sample Variance

We define the total sample variance as the sum of the diagonal elements
of the sample covariance matrix, that is

total sample variance =

p∑
i=1

sii .

1 It is the sum of the squared lengths of the p deviation vectors

d1 = y1 − x̄11N , . . . ,dp = y1 − x̄p1N

divided by N − 1.

2 It pays no attention to the orientation of di .
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