Multivariate Statistical Analysis

Lecture 02

Fudan University

luoluo@fudan.edu.cn

Outline

(1) Random Vectors and Matrices
(2) Random Samples
(3) Generalized Variance

Outline

(1) Random Vectors and Matrices

(2) Random Samples

(3) Generalized Variance

Random Vectors and Matrices

(1) A random matrix (vector) is a matrix (vector) whose elements are random variables.
(2) The expected value of a random matrix (or vector) is the matrix (vector) consisting of the expected values of each of its elements.
(3) Let \mathbf{X} be an $m \times n$ random matrix, then its expected value, denoted by $\mathbb{E}[\mathbf{X}]$, is the $m \times n$ matrix of numbers (if they exist)

$$
\mathbb{E}[\mathbf{X}]=\left[\begin{array}{cccc}
\mathbb{E}\left[x_{11}\right] & \mathbb{E}\left[x_{12}\right] & \ldots & \mathbb{E}\left[x_{1 n}\right] \\
\mathbb{E}\left[x_{21}\right] & \mathbb{E}\left[x_{22}\right] & \ldots & \mathbb{E}\left[x_{2 n}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{E}\left[x_{m 1}\right] & \mathbb{E}\left[x_{m 2}\right] & \ldots & \mathbb{E}\left[x_{m n}\right]
\end{array}\right] .
$$

Expectation of Random Matrices

Let \mathbf{X} and \mathbf{Y} be random matrices of the same dimension, and let \mathbf{A} and \mathbf{B} be conformable matrices of constants. Then we have

$$
\mathbb{E}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}]
$$

and

$$
\mathbb{E}[\mathbf{A X B}]=\mathbf{A} \mathbb{E}[\mathbf{X}] \mathbf{B}
$$

Random Vector and Covariance Matrix

For random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$, we denote $\boldsymbol{\mu}=\mathbb{E}[\mathbf{x}]$.
The expected value of the random matrix $(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}$ is

$$
\operatorname{Cov}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]
$$

the covariance or covariance matrix of \mathbf{x}.
(1) The i-th diagonal element of this matrix, $\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)^{2}\right]$, is the variance of x_{i}.
(2) The i, j-th off-diagonal element $(i \neq j), \mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$ is the covariance of x_{i} and x_{j}.
(3) We have $\operatorname{Cov}[\mathbf{x}]=\mathbb{E}\left[\mathbf{x x}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}$.

Random Vector and Covariance Matrix

Theorem

Let $\mathbf{y}=\mathbf{D x}+\mathbf{f}$, where
(1) \mathbf{D} is an $n \times p$ constant matrix,
(2) x is a p-dimensional random vector,
(3) and \mathbf{f} is a n-dimensional constant vector.

Then we have

$$
\mathbb{E}[\mathbf{y}]=\mathbf{D E}[\mathbf{x}]+\mathbf{f} \quad \text { and } \quad \operatorname{Cov}[\mathbf{y}]=\operatorname{Cov}[\mathbf{D x}]=\mathbf{D} \operatorname{Cov}[\mathbf{x}] \mathbf{D}^{\top} .
$$

Example

Let $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ be a random vector with

$$
\mathbb{E}[\mathbf{x}]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad \operatorname{Cov}[\mathbf{x}]=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right] .
$$

Let $\mathbf{z}=\left[z_{1}, z_{2}\right]$ such that $z_{1}=x_{1}-x_{2}$ and $z_{2}=x_{1}+x_{2}$.
(1) Find the $\mathbb{E}[\mathbf{z}]$ and $\operatorname{Cov}[\mathbf{z}]$.
(2) Find the condition that leads to z_{1} and z_{2} be uncorrelated.

Correlation

For random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$, we write its covariance as

$$
\operatorname{Cov}[\mathbf{x}]=\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{11} & \ldots & \sigma_{1 p} \\
\vdots & \ddots & \vdots \\
\sigma_{p 1} & \ldots & \sigma_{p p}
\end{array}\right]
$$

The correlation coefficient $\rho_{i j}$ is defined as

$$
\rho_{i j}=\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}
$$

which measures linear association between x_{i} and x_{j}.

Correlation

The population correlation matrix of \mathbf{x} is defined as

$$
\begin{aligned}
\boldsymbol{\rho} & =\left[\begin{array}{ccc}
\frac{\sigma_{11}}{\sqrt{\sigma_{11} \sigma_{11}}} & \cdots & \frac{\sigma_{1 p}}{\sqrt{\sigma_{11} \sigma_{p p}}} \\
\vdots & \ddots & \vdots \\
\frac{\sigma_{p 1}}{\sqrt{\sigma_{p p} \sigma_{11}}} & \cdots & \frac{\sigma_{p p}}{\sqrt{\sigma_{p p} \sigma_{p p}}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & \cdots & \rho_{1 p} \\
\vdots & \ddots & \vdots \\
\rho_{p 1} & \cdots & 1
\end{array}\right] .
\end{aligned}
$$

Transformation of Variables

Let the density of p-dimensional random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$ be $f(\mathbf{x})$.
Consider the p-dimensional random vector $\mathbf{y}=\left[y_{1}, \ldots, y_{p}\right]^{\top}$ such that $y_{i}=u_{i}(\mathbf{x})$ for $i=1, \ldots, p$. Let the density function of \mathbf{y} be $g(\mathbf{y})$.

Assume the transformation $\mathbf{u}(\mathbf{x})=\left[u_{1}(\mathbf{x}), \ldots, u_{p}(\mathbf{x})\right]^{\top}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ from the space of x to the space of y is smooth and one-to-one.

Then we have $f(\mathbf{x})=g(\mathbf{u}(\mathbf{x}))|\operatorname{det}(\mathbf{J}(\mathbf{x}))|$ where

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial u_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{1}(\mathbf{x})}{x_{2}} & \cdots & \frac{\partial u_{1}(\mathbf{x})}{\partial x_{p}} \\
\frac{\partial u_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{2}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial u_{2}(\mathbf{x})}{\partial x_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial u_{p}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{p}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial u_{p}(\mathbf{x})}{\partial x_{p}}
\end{array}\right]
$$

Transformation of Variables

Similarly, we also have $g(\mathbf{y})=f\left(\mathbf{u}^{-1}(\mathbf{y})\right)\left|\operatorname{det}\left(\mathbf{J}^{-1}(\mathbf{y})\right)\right|$ where

$$
\mathbf{J}^{-1}(\mathbf{y})=\left[\begin{array}{cccc}
\frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{p}} \\
\frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{p}}
\end{array}\right] .
$$

Outline

(1) Random Vectors and Matrices

(2) Random Samples

(3) Generalized Variance

Random Samples

We use the notation $x_{\alpha j}$ to indicate the value of the α-th variable that is observed on the j-th item, or trial.
We display the N measurements on p variables as the $N \times p$ matrix

$$
\mathbf{X}=\left[\begin{array}{cccccc}
x_{11} & x_{12} & \ldots & x_{1 j} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 j} & \ldots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_{\alpha 1} & x_{\alpha 2} & \ldots & x_{\alpha j} & \ldots & x_{\alpha p} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_{N 1} & x_{N 2} & \ldots & x_{N j} & \ldots & x_{N p}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{i}^{\top} \\
\vdots \\
\mathbf{x}_{N}^{\top}
\end{array}\right] .
$$

We mainly focus on the following case.
(1) The random p variables in a single trial, such as $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i p}\right]^{\top}$ will usually be correlated, and the ones from different trials be independent.

It may not hold when the variables are likely to drift over time.

Sample Mean and Covariance

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be a random sample from a joint distribution that has mean vector $\boldsymbol{\mu}$, and covariance matrix $\boldsymbol{\Sigma}$. Then the sample means

$$
\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}
$$

is an unbiased estimator of $\boldsymbol{\mu}$, and its covariance matrix is

$$
\operatorname{Cov}[\overline{\mathbf{x}}]=\frac{1}{N} \boldsymbol{\Sigma} .
$$

However, the matrix

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

is a biased estimator of $\boldsymbol{\Sigma}$.

Sample Covariance

We define the sample (variance-covariance) covariance matrix as

$$
\begin{equation*}
\mathbf{S}=\frac{N}{N-1} \hat{\boldsymbol{\Sigma}}=\frac{1}{N-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \tag{1}
\end{equation*}
$$

which is an unbiased estimator of $\boldsymbol{\Sigma}$.

Let $\mathbf{1}_{N}=[1, \ldots, 1]^{\top} \in \mathbb{R}^{N}$, then we have

$$
\begin{align*}
\mathbf{S} & =\frac{1}{N-1} \mathbf{X}^{\top}\left(\mathbf{I}_{N}-\frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\top}\right) \mathbf{X} \tag{2}\\
& =\frac{1}{N-1}\left(\mathbf{X}^{\top} \mathbf{X}-\frac{1}{N} \mathbf{X}^{\top} \mathbf{1}_{N} \mathbf{1}_{N}^{\top} \mathbf{X}\right) \tag{3}
\end{align*}
$$

It provides a more efficient implementation.

Sample Correlation

Given sample covariance matrix

$$
\mathbf{S}=\left[\begin{array}{ccc}
s_{11} & \ldots & s_{1 p} \\
\vdots & \ddots & \vdots \\
s_{p 1} & \ldots & s_{p p}
\end{array}\right] \in \mathbb{R}^{p \times p}
$$

we define the sample correlation matrix as

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 p} \\
\vdots & \ddots & \vdots \\
r_{p 1} & \cdots & r_{p p}
\end{array}\right] \in \mathbb{R}^{p \times p},
$$

where $r_{i j}=\frac{s_{i j}}{\sqrt{s_{i j}} \sqrt{s_{j j}}}$.

Geometrical Interpretation

We display p-dimensional random vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ as follows

$$
\mathbf{X}=\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 p} \\
\vdots & \ddots & \vdots \\
x_{N 1} & \ldots & x_{N p}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{N}^{\top}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{y}_{1} & \ldots & \mathbf{y}_{p}
\end{array}\right] \in \mathbb{R}^{N \times p} .
$$

We denote $\overline{\mathbf{x}}=\left[\begin{array}{lll}\bar{x}_{1} & \ldots & \bar{x}_{p}\end{array}\right]^{\top}$ and $\mathbf{d}_{i}=\mathbf{y}_{i}-\bar{x}_{i} \mathbf{1}_{N}$.
(1) The projection of \mathbf{y}_{i} onto the equal angular vector $\mathbf{1}_{N}$ is the vector $\bar{x}_{i} \mathbf{1}_{N}$.
(2) The information comprising \mathbf{S} is obtained from the deviation vectors $\left\{\mathbf{d}_{i}\right\}$.
(3) The sample correlation $r_{i j}$ is the cosine of the angle between \mathbf{d}_{i} and \mathbf{d}_{j}.

Outline

(1) Random Vectors and Matrices

(2) Random Samples

(3) Generalized Variance

Sample Covariance

When all variables are observed, the variation is described by the sample covariance matrix

$$
\mathbf{S}=\left[\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 p} \\
s_{21} & s_{22} & \cdots & s_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
s_{p 1} & s_{p 2} & \cdots & s_{p p}
\end{array}\right] \in \mathbb{R}^{p \times p}
$$

where $s_{i j}=\frac{1}{N-1} \sum_{\alpha=1}^{N}\left(x_{\alpha i}-\bar{x}_{i}\right)\left(x_{\alpha j}-\bar{x}_{j}\right)$.
The sample covariance matrix contains p variances and $p(p-1) / 2$ potentially different covariances.

Generalized Sample Variance

The value of $\operatorname{det}(\mathbf{S})$ reduces to usual sample variance when $p=1$.
This determinant is called the generalized sample variance:

$$
\text { generalized sample variance }=\operatorname{det}(\mathbf{S}) .
$$

Geometrical Interpretation: Parallelotope

Theorem

Define $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right] \in \mathbb{R}^{N \times p}$ and let

$$
\operatorname{Vol}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{p}}\right)
$$

be the p-dimensional volume of the parallelotope with $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{N}$ as principal edges ($N \geq p$), then

$$
\left(\operatorname{Vol}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{p}}\right)\right)^{2}=\operatorname{det}\left(\mathbf{V}^{\top} \mathbf{V}\right)
$$

For $\mathbf{d}_{i}=\mathbf{y}_{i}-\bar{x}_{i} \mathbf{1}_{N}$, we have

$$
\operatorname{det}(\mathbf{S})=(N-1)^{-p}\left(\operatorname{Vol}\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathrm{p}}\right)\right)^{2}
$$

Geometrical Interpretation: Parallelotope

Figure 3.6 (a) "Large" generalized sample variance for $p=3$.
(b) "Small" generalized sample variance for $p=3$.

Geometrical Interpretation: Hyperellipsoid

The coordinates

$$
\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{p}\right]^{\top}
$$

of the points a constant distance $c>0$ from $\overline{\mathbf{x}}$ satisfy (suppose $\mathbf{S} \succ \mathbf{0}$)

$$
(\mathbf{x}-\overline{\mathbf{x}})^{\top} \mathbf{S}^{-1}(\mathbf{x}-\overline{\mathbf{x}})=c^{2}
$$

which defines hyperellipsoid centered at $\overline{\mathbf{x}}$.

The volume of this hyperellipsoid is

$$
\frac{2 \pi^{p / 2}}{p \Gamma(p / 2)} \cdot c^{p}(\operatorname{det}(\mathbf{S}))^{1 / 2}
$$

where

$$
\Gamma(p)=\int_{0}^{\infty} t^{p-1} \exp (-t) \mathrm{d} t
$$

Generalized Sample Variance is Zero

The generalized variance is zero when, and only when, at least one of

$$
\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{p}\right\}
$$

lies in the hyperplane formed by all linear combinations of the others.

That is, the columns of the matrix of deviations

$$
\begin{aligned}
\mathbf{X}-\mathbf{1}_{N} \overline{\mathbf{x}}^{\top}=\left[\begin{array}{c}
\left(\mathbf{x}_{1}-\overline{\mathbf{x}}\right)^{\top} \\
\vdots \\
\left(\mathbf{x}_{N}-\overline{\mathbf{x}}\right)^{\top}
\end{array}\right] & =\left[\begin{array}{lll}
\mathbf{y}_{1}-\bar{x}_{1} \mathbf{1}_{N} & \ldots & \mathbf{y}_{p}-\bar{x}_{p} \mathbf{1}_{N}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{d}_{1} & \ldots & \mathbf{d}_{p}
\end{array}\right] \in \mathbb{R}^{N \times p}
\end{aligned}
$$

are linearly dependent.

Generalized Sample Variance Determined by Correlation

We can also define generalized variance by

$$
\operatorname{det}(\mathbf{R})
$$

where \mathbf{R} is the sample correlation matrix

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 p} \\
\vdots & \ddots & \vdots \\
r_{p 1} & \cdots & r_{p p}
\end{array}\right] \in \mathbb{R}^{p \times p},
$$

where $r_{i j}=\frac{s_{i j}}{\sqrt{s_{i i}} \sqrt{s_{j j}}}$.
It holds that

$$
\operatorname{det}(\mathbf{S})=\operatorname{det}(\mathbf{R}) \prod_{i=1}^{p} s_{i i}
$$

Total Sample Variance

We define the total sample variance as the sum of the diagonal elements of the sample covariance matrix, that is

$$
\text { total sample variance }=\sum_{i=1}^{p} s_{i i} .
$$

(1) It is the sum of the squared lengths of the p deviation vectors

$$
\mathbf{d}_{1}=\mathbf{y}_{1}-\bar{x}_{1} \mathbf{1}_{N}, \ldots, \mathbf{d}_{p}=\mathbf{y}_{1}-\bar{x}_{p} \mathbf{1}_{N}
$$

divided by $N-1$.
(2) It pays no attention to the orientation of \mathbf{d}_{i}.

