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Course Overview

Homepage:

https://luoluo-sds.github.io/

Prerequisite courses:

Calculus

Linear algebra

Probability and statistics

Optimization

Machine learning
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Course Overview

Textbook (recommended reading):
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Grading Policy

Option I:

Homework, 40%

Final Exam, 60%

Option II:

Quiz, 20%

Homework, 30%

Final Exam, 50%
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What is Multivariate Statistics?

2021–2022 NBA season
1 Points leaders:

Rank Player PTS Rank Player PTS
1 Joel Embiid 30.6 16 Shai Gilgeous-Alexander 24.5
2 LeBron James 30.3 17 Zach LaVine 24.4
3 Giannis Antetokounmpo 29.9 18 CJ McCollum 24.3
4 Kevin Durant 29.9 19 Paul George 24.3
5 Luka Dončić 28.4 20 Damian Lillard 24.0
6 Trae Young 28.4 21 Jaylen Brown 23.6
7 DeMar DeRozan 27.9 22 De'Aaron Fox 23.2
8 Kyrie Irving 27.4 23 Bradley Beal 23.2
9 Ja Morant 27.4 24 Anthony Davis 23.2

10 Nikola Jokić 27.1 25 Pascal Siakam 22.8
11 Jayson Tatum 26.9 26 Brandon Ingram 22.7
12 Devin Booker 26.8 27 James Harden 22.5
13 Donovan Mitchell 25.9 28 CJ McCollum 22.1
14 Stephen Curry 25.5 29 Kristaps Porziņģis 22.1
15 Karl-Anthony Towns 24.6 30 James Harden 22.0

2 MVP ranking:

Rank Player PTS TRB AST STL BLK WIN%
1 Nikola Jokić 27.1 13.8 7.9 1.5 0.9 0.585
2 Joel Embiid 30.6 11.7 4.2 1.1 1.5 0.622
3 Giannis Antetokounmpo 29.9 11.6 5.8 1.1 1.4 0.622
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Applications of Multivariate Statistics

1 Investigating of the dependency among variables

2 Hypotheses testing

3 Dimensionality reduction

4 Prediction

5 Clustering
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Applications of Multivariate Statistics

课程 学生1 学生2 学生3 学生4 学生5 学生6
习近平新时代中国特色社会主义思想概论    B+    A-    B    A-    C    A
马克思主义原理    A    A    B   B+    B    B+
形势与政策    A-    A-    A    A-    B+    B+
数学分析    A    A    C+    A-    B-    B+
高等代数    A-    A    C    B+    C+    A-
最优化方法    A    A-    C    A-    C+    A-
多元统计分析    A    ？    D    ？    ？    A-
程序设计    B+    A    A    A-    B+    B-
数据库及实现    B+    ？    A    B+    B    ？
神经网络与深度学习    B+   A-    A-    A-    ？    B
计算机视觉    B+    A    A    ？    B-    B-
自然语言处理    B+    ？    A    A-    B+    B+
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Where is Multivariate Statistics?

Statistics

Computational 
Mathematics

Computer 
Science

Multivariate
Statistics

Statistics

Multivariate
Statistics
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Where is Multivariate Statistics?

Linear 
Algebra Optimization

Multivariate
Statistics

We start from the review of linear algebra and convex optimization.
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Notations

We use xi to denote the entry of the n-dimensional vector x such that

x =




x1
x2
...
xn


 ∈ Rn.

We use aij or (A)ij to denote the entry of matrix A with dimension m × n
such that

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 ∈ Rm×n.
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Notations

We can also present the matrix as

A =




A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq


 ∈ Rm×n.

if the sub-matrices are compatible with the partition.

We define

0 =




0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ∈ Rm×n and I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ∈ Rn×n.
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Transpose

The transpose of a matrix results from flipping the rows and columns.
Given a matrix A ∈ Rm×n such that

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 ∈ Rm×n,

then its transpose, written A⊤ ∈ Rn×m, is an n ×m matrix such that

A⊤ =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn


 ∈ Rn×m.

Sometimes, we also use A′ the present the transpose of A.
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Addition/Subtraction

If A ∈ Rm×n and B ∈ Rm×n are two matrices of the same order, then

A+ B =




a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b1n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


 ∈ Rm×n

and

A− B =




a11 − b11 a12 − b12 · · · a1n − b1n
a21 − b21 a22 − b22 · · · a2n − b1n

...
...

. . .
...

am1 − bm1 am2 − bm2 · · · amn − bmn


 ∈ Rm×n.
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Multiplication

The product of A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ Rm×p,

where

C =




c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
. . .

...
cp1 cp2 · · · cpq


 ∈ Rm×p.

and cij =
∑n

k=1 aikbkj .
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Trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A), is the sum of diagonal
elements in the matrix:

tr(A) =
n∑

i=1

aii .

The trace has the following properties

1 For A ∈ Rn×n, we have tr(A) = tr
(
A⊤).

2 For A ∈ Rn×n, B ∈ Rn×n, c1 ∈ R and c2 ∈ R, we have

tr(c1A+ c2B) = c1tr(A) + c2tr(B).

3 For A and B such that AB is square, tr(AB) = tr(BA).

4 For A, B and C such that ABC is square, we have

tr(ABC) = tr(BCA) = tr(CAB).
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Inverse

The inverse of a square matrix A ∈ Rn×n is denoted by A−1 and is the
unique matrix such that

AA−1 = I = A−1A.

We say that A is invertible or non-singular if A−1 exists and non-invertible
or singular otherwise.
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Inverse

If all the necessary inverse exist, we have

1 (A−1)−1 = A

2 (cA)−1 = c−1A−1

3 (A−1)⊤ = (A⊤)−1

4 (AB)−1 = B−1A−1

5 A−1 = A⊤ if A⊤A = I

For A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×p and D ∈ Rp×n, we have

(A+ BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1

if A and A+ BCD are non-singular.
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Vector Norms

A norm of a vector x ∈ Rn written by ∥x∥, is informally a measure of the
length of the vector.

Formally, a norm is any function Rn → R that satisfies four properties:

1 For all x ∈ Rn, we have ∥x∥ ≥ 0 (non-negativity).

2 ∥x∥ = 0 if and only if x = 0.

3 For all x ∈ Rn and t ∈ R, we have ∥tx∥ = |t| ∥x∥.
4 For all x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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Vector Norms

There are some examples for x ∈ Rn:

1 The ℓ2 norm is ∥x∥2 =
√∑n

i=1 x
2
i

2 The ℓ1 norm is ∥x∥1 =
∑n

i=1 |xi |
3 The ℓp norm is ∥x∥p = (

∑n
i=1 |xi |p)

1/p for p > 1.

4 The ℓ∞ norm is ∥x∥∞ = maxi |xi |
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Orthogonality

1 Two vectors x, y ∈ Rn are orthogonal if x⊤y = 0.

2 A vector x ∈ Rn is normalized if ∥x∥2 = 1.

3 A square matrix U ∈ Rn×n is orthogonal if all its columns are
orthogonal to each other and are normalized (the columns are then
referred to as being orthonormal). In other word, we have

U⊤U = I = UU⊤.

4 Note that if U is not square, i.e., U ∈ Rm×n, n < m, but its columns
are still orthonormal, then U⊤U = I, but UU⊤ ̸= I, we call that U is
column orthonormal.
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Quiz

What is the volume of the tetrahedral?
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Determinant

Given square matrix A ∈ Rn×n as

A =




a⊤(1)

a⊤(2)
...

a⊤(n)



,

the determinant of A is the “volume” of the set

S =

{
v ∈ Rn : v =

n∑

i=1

βia(i),where 0 ≤ βi ≤ 1, i = 1, . . . , n

}
.

The set S formed by taking all possible linear combinations of the row
vectors, where the coefficients are all between 0 and 1.
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Determinant

The determinant of a square matrix A ∈ Rn×n, is denoted by det(A) or
|A|, which is defined as

det(A) =
∑

τ=(τ1,...,τn)

(
sgn(τ)

n∏

i=1

ai ,τi

)

where τ = (τ1, . . . , τn) is permutation of (1, 2, . . . , n). The signature
sgn(τ) is defined to be +1 whenever the reordering given by τ can be
achieved by successively interchanging two entries an even number of
times, and −1 whenever it can be achieved by an odd number of such
interchanges.
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Determinant

We can also define determinant recursively

det(A) =
n∑

i=1

(−1)i+jaij det(A\i ,\j) for any j ∈ {1, . . . , n}

with the initial condition det(aij) = aij , where A\i ,\j is the (n− 1)× (n− 1)
matrix obtained by deleting the i-th row and j-th column from A.
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Determinant

1 det(I) = 1

2 If we multiply a single row in A by a scalar t ∈ Rn, then the
determinant of the new matrix is t det(A).

3 If we exchange any two rows of the square matrix A, then the
determinant of the new matrix is − det(A).

4 For A ∈ Rn×n, we have det(A) = 0 if and only if A is singular.
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Determinant

1 For A ∈ Rn×n is triangular, then det(A) =
∏n

i=1 aii .

2 For A ∈ Rn×n, B ∈ Rp×p and C ∈ Rn×p, we have

det

([
A C
0 B

])
= det(A) det(B)

3 For A ∈ Rn×n, we have det(A) = det(A⊤).

4 For A,B ∈ Rn×n, we have det(AB) = det(A) det(B).

5 For A ∈ Rn×n is orthogonal, we have det(A) = 1.
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Singular Value Decomposition

The singular value decomposition (SVD) of A ∈ Rm×n matrix is

A = UΣV⊤,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is rectangular diagonal matrix
with non-negative real numbers on the diagonal and V ∈ Rn×n is
orthogonal.

1 The diagonal entries of Σ are uniquely determined by A and are
known as the singular values of A.

2 The number of non-zero singular values is equal to the rank of A.

3 The columns of U and the columns of V are called left-singular
vectors and right-singular vectors of A, respectively.
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Singular Value Decomposition

The term SVD sometimes refers to the compact SVD, that is

A = UrΣrV
⊤
r

in which Σr is square diagonal of size r × r , where r ≤ min{m, n} is the
rank of A, and has only the non-zero singular values.

In this variant, Ur is an m × r column orthogonal matrix and Vr is
an n × r column orthogonal matrix such that

U⊤
r Ur = V⊤

r Vr = I.
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Matrix Norms

Matrix norm is any function Rm×n → R that satisfies

1 For all A ∈ Rm×n, we have ∥A∥ ≥ 0.

2 ∥A∥ = 0 if and only if A = 0.

3 For all A ∈ Rm×n and t ∈ R, we have ∥tA∥ = |t| ∥A∥.
4 For all A,B ∈ Rm×n, we have ∥A+ B∥ ≤ ∥A∥+ ∥B∥.
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Matrix Norms

Given any matrix A ∈ Rm×n, its spectral norm is defined as

∥A∥2 = sup
x∈Rn,x̸=0

∥Ax∥2
∥x∥2

= sup
x∈Rn,∥x∥2=1

∥Ax∥2 ;

and its Frobenius norm is defined as

∥A∥F =

√√√√
m∑

i=1

n∑

j=1

a2ij =
√

tr(A⊤A).

We can show that

∥A∥2 = σ1 and ∥A∥F =
√
σ2
1 + · · ·+ σ2

r ,

where σ1 ≥ σ2 · · · ≥ σr ≥ 0 are the non-zero singular values of A.
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Low-Rank Approximation

Let A = UrΣrV⊤
r be condense SVD of rank-r matrix A ∈ Rm×n and partition

Ur = [u1, . . . , ur ] ∈ Rm×r , Σr =

σ1

. . .

σr

 ∈ Rr×r , Vr = [v1, . . . , vr ] ∈ Rn×r .

The matrix Ak = UkΣkV⊤
k is the best rank-k approximation of A (k ≤ r), where

Uk = [u1, . . . , uk ] ∈ Rm×k , Σk =

σ1

. . .

σk

 ∈ Rk×k , Vk = [v1, . . . , vk ] ∈ Rn×k .

We have

Ak = argmin
rank(X)≤k

∥A− X∥2 = argmin
rank(X)≤k

∥A− X∥F .
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar x⊤Ax is
called a quadratic form and we have

x⊤Ax =
n∑

i=1

n∑

j=1

aijxixj .

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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Definiteness

We introduce the definiteness as follows.

1 A symmetric matrix A ∈ Rn×n is positive definite if for all non-zero
vectors x ∈ Rn holds that x⊤Ax > 0. This is usually denoted by
A ≻ 0.

2 A symmetric matrix A ∈ Rn×n is positive semi-definite if for all
vectors x ∈ Rn holds that x⊤Ax ≥ 0. This is usually denoted by
A ⪰ 0.

Similarly, we can define negative definite and negative semi-definite
matrices.

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn 34 / 47



Schur Complement

Given matrices A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p and D ∈ Rq×q, we
suppose D is non-singular and let

M =

[
A B
C D

]
∈ R(p+q)×(p+q).

Then the Schur complement of the block D for M is

A− BD−1C ∈ Rp×p.

Then we can decompose the matrix M as

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]

and the inverse of M can be written as

M−1 =

[
A B
C D

]−1

=

[
I 0

−D−1C I

] [
(A− BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]
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Schur Complement

The decomposition

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]

means we have det(M) = det(D) det(A− BD−1C).

We consider the symmetric matrix

M =

[
A B
B⊤ D

]

with non-singular D and let S = A− BD−1B⊤, then

1 M ≻ 0 ⇐⇒ D ≻ 0 and S ≻ 0.

2 If D ≻ 0, then M ⪰ 0 ⇐⇒ S ⪰ 0.
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Low-Rank Approximation and Beyond

For symmetric positive-definite A ∈ Rn×n, its best rank-k approximation is

Ak = UkΣkU
⊤
k = argmin

rank(X)≤k

∥A− X∥2 = argmin
rank(X)≤k

∥A− X∥F .

Inspired by probabilistic PCA, we find the better estimator

Âk = Uk(Σk − δ̂Ik)U
⊤
k + δ̂Id , where δ̂ =

1

n − k

n∑

i=k+1

σi .

We can verify

(
Uk(Σk − δ̂Ik)

1/2, δ̂
)
= argmin

rank(B)≤k,δ∈R

∥∥A− (BB⊤ + δId)
∥∥
F

and

∥∥A− Âk

∥∥
F
≤ ∥A− Ak∥F .
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The Gradient

Suppose that f : Rm×n → R is a differentiable function that takes as input
a matrix X of size m × n and returns a real value. Then the gradient of f
with respect to X is

∂f (X)

∂X
= ∇f (X) =




∂f (X)

∂x11
· · · ∂f (X)

∂x1n
...

. . .
...

∂f (X)

∂xm1
· · · ∂f (X)

∂xmn



∈ Rm×n.
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Some Basic Results

1 For X ∈ Rm×n, we have
∂(f (X) + g(X))

∂X
=

∂f (X)

∂X
+

∂g(X)

∂X
.

2 For X ∈ Rm×n and t ∈ R, we have
∂tf (X)

∂X
= t

∂f (X)

∂X
.

3 For A,X ∈ Rm×n, we have
∂tr(A⊤X)

∂X
= A.

4 For A ∈ Rn×n and x ∈ Rn, we have
∂x⊤Ax

∂x
= (A+ A⊤)x.

If A is symmetric, we have
∂x⊤Ax

∂x
= 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Hessian

Suppose that f : Rn → R is a twice differentiable function. Then its
Hessian with respect to x, written as ∇2f (x), which is defined as

∇2f (x) =




∂2f (x)

∂x1∂x1
· · · ∂2f (x)

∂x1∂xn
...

. . .
...

∂2f (x)

∂xn∂x1
· · · ∂2f (x)

∂xn∂xn



∈ Rn×n.

Taylor’s expansion:

f (x) ≈ f (a) +∇f (a)⊤(x− a) +
1

2
(x− a)⊤∇2f (a)(x− a).
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Convex Function

A function f : Rd → R is convex if it holds

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y)

for all x, y ∈ Rd and α ∈ [0, 1].

Theorem (first-order condition)

If a function f : Rd → R is differentiable, then it is convex if and only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩

holds for any x, y ∈ Rd .

If a function f : Rd → R is convex and differentiable, then x∗ is the global
minimizer of f (·) if and only if ∇f (x∗) = 0.
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Convex Function

Theorem (second-order condition)

If a function f : Rd → R is twice differentiable, then it is convex if and only if

∇2f (x) ⪰ 0

holds for any x ∈ Rd .
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Example: Least Squares

Consider the least square problem

min
x∈Rn

f (x) =
1

2
∥Ax− b∥22 .

where A ∈ Rm×n is full rank, b ∈ Rm and m ≥ n.

The solution is

x∗ = (A⊤A)−1A⊤b.
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Pseudo Inverse

Let A = UrΣrV⊤
r ∈ Rm×n be the condense SVD, where r is the rank of

A. We define the pseudo inverse of A as

A† = VrΣ
−1
r U⊤

r ∈ Rn×m.

In special case, we have

1 If rank(A) = n, we have A† = (A⊤A)−1A⊤.

2 If rank(A) = m, we have A† = A⊤(AA⊤)−1.

3 If A is square and non-singular, we have A† = A−1.

The solution of the general least square problem

min
x∈Rn

f (x) =
1

2
∥Ax− b∥22

is {x : x = A†b+ (I− A†A)b, b ∈ Rn}.
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Gradient Descent Method

We consider the optimization problem

min
x∈R

f (x),

where f : Rd → R is differentiable.

The most popular method is gradient descent, which follows

xt+1 = xt − ηt∇f (xt),

where ηt > 0.
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Examples: Adversarial Attack

+ .007× =

“gibbon”“panda”
57.7% confidence 99.3 % confidence

We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained pertubation of

η = εsign (∇xJ(θ,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ε = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ε = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y ∈ {−1, 1} with P (y = 1) = σ
(
w>x+ b

)
where

σ(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y∼pdataζ(−y(w>x+ b))

where ζ(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

noise

We can only access the output of a big model.
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Zeroth-Order Optimization

We consider the optimization problem

min
x∈Rd

f (x),

where the gradient of f : Rd → R is difficult to access.

We can solve the problem by iteration

xt+1 = xt − ηt ·
f (xt + δut)− f (xt)

δ
· ut

for some ηt > 0 and δ > 0, where ut ∈ Rd is a random vector.

It also works for nonsmooth nonconvex optimization.

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn 47 / 47


	Course Overview
	Linear Algebra
	Convex Optimization

