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Course Overview

Homepage:
@ https://luoluo-sds.github.io/

Prerequisite courses:
o Calculus
@ Linear algebra
@ Probability and statistics
@ Optimization

@ Machine learning
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Course Overview

Textbook (recommended reading):
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BWILEY

An Introduction
to Multivariate
Statistical Analysis
Third Edition

T. W. Anderson

WILEY SERIES IN PROBABILITY AND STATISTICS.
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Grading Policy

Option I:
o Homework, 40%
o Final Exam, 60%

Option lI:
o Quiz, 20%
o Homework, 30%

@ Final Exam, 50%
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What is Multivariate Statistics?

2021-2022 NBA season
@ Points leaders:

Rank Player PTS Rank Player PTS
1 Joel Embiid 30.6 16 | Shai Gilgeous-Alexander | 24.5
2 LeBron James 30.3 17 Zach LaVine 24.4
3 Giannis Antetokounmpo | 29.9 18 CJ McCollum 24.3
4 Kevin Durant 29.9 19 Paul George 24.3
5 Luka Donéi¢ 284 20 Damian Lillard 24.0
6 Trae Young 28.4 21 Jaylen Brown 23.6
7 DeMar DeRozan 27.9 22 De'Aaron Fox 232
8 Kyrie Irving 274 23 Bradley Beal 23.2
9 Ja Morant 27.4 24 Anthony Davis 232
10 Nikola Joki¢ 27.1 25 Pascal Siakam 22.8
11 Jayson Tatum 26.9 26 Brandon Ingram 22.7
12 Devin Booker 26.8 27 James Harden 225
13 Donovan Mitchell 25.9 28 CJ McCollum 22.1
14 Stephen Curry 25.5 29 Kristaps Porzingis 22.1
15 Karl-Anthony Towns 24.6 30 James Harden 22.0

© MVP ranking:

Rank Player PTS [ TRB | AST | STL | BLK | WIN%

1 Nikola Joki¢ 271)1138] 79 | 1.5 0.9 [ 0.585
2 Joel Embiid 306 (117 42 [11]15]0.622
3 Giannis Antetokounmpo | 29.9 [ 116 | 58 [11]14]0.622
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Applications of Multivariate Statistics

@ Investigating of the dependency among variables
@ Hypotheses testing

© Dimensionality reduction

@ Prediction

© Clustering

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn



Applications of Multivariate Statistics
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Where is Multivariate Statistics?

Computer
Statistics Statistics Science

Multivariate
Statistics

Computational
Mathematics

Multivariate
Statistics

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn



Where is Multivariate Statistics?

Linear

Algebra Optimization

N 2

Multivariate
Statistics

We start from the review of linear algebra and convex optimization.
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Outline

© Linear Algebra
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We use x; to denote the entry of the n-dimensional vector x such that

Xn

We use ajj or (A);; to denote the entry of matrix A with dimension m x n

such that
da11 di2 - din
A— ani axy - azn c Rm*n
dml am2 - amn
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We can also present the matrix as

Ain A -+ Ay
P L R
Apl Ap2 qu

if the sub-matrices are compatible with the partition.

We define
00 --- 0 1 0 - 0
00 --- 0 o1 - 0
0= | €R™ and 1= e R™"
0 0 0 0 0 1
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Transpose

The transpose of a matrix results from flipping the rows and columns.
Given a matrix A € R™*" such that

di1 412 -+ din
dar1 dan2 te dazn
—_ mxn
A= : : .. : €R )
adml adm2 - dmn

then its transpose, written AT € R™*™ 'is an n x m matrix such that

a11 a2 - ami
a2 a2 - am2

AT — ' . . ' e Rnxm.
din an - dmn

Sometimes, we also use A’ the present the transpose of A.
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Addition /Subtraction

If A e R™" and B € R™*" are two matrices of the same order, then

air+bir awp+bi -+ ain+ by
a1 +bo1 ax+bx - ay+big mxcn

A+B= . : . _ eR
amil + bml am2 + bm2 e dmn + bmn

and

air — b a2 —bi2 -+ ain— b1

A B- a1 — b1 axm — by - az — b1 i~
ami — bmi am2 —bm2 - amn — bmn
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Multiplication

The product of A € R™*" and B € R"*P is the matrix

C = AB € R™*P,

where
C11 C12 '+ Cig
€1 Cxp - Cq
C=| . o | e RTXP,
Cp1 Cp2 -+ Cpq

n
and Cij = Zk:l a,-kbkj.
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Trace

The trace of a square matrix A € R"*", denoted tr(A), is the sum of diagonal
elements in the matrix:

tr(A) = z”: aji.
i=1
The trace has the following properties
@ For A € R™", we have tr(A) = tr (AT).
Q@ ForAcR™" BeR"™" ¢ €R and ¢ € R, we have
tr(ciA + B) = citr(A) + ootr(B).
© For A and B such that AB is square, tr(AB) = tr(BA).

© For A, B and C such that ABC is square, we have

tr(ABC) = tr(BCA) = tr(CAB).
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Inverse

The inverse of a square matrix A € R™" is denoted by A~! and is the
unique matrix such that

AA~l=1=A"1A.

We say that A is invertible or non-singular if A~! exists and non-invertible
or singular otherwise.
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Inverse

If all the necessary inverse exist, we have
0 (A1) l=A
Q (cA)t=ctA!
O (A =@
Q (AB)"1=B!A!
@A l=ATiIfATA=I
For A €¢ R™" B € R"™P, C & RP*P and D € RP*" we have

(A+BCD)'=A"'_-A"'B(C'+DA'B)'DA!

if A and A + BCD are non-singular.

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn



A norm of a vector x € R” written by ||x||, is informally a measure of the
length of the vector.

Formally, a norm is any function R" — R that satisfies four properties:
@ For all x € R", we have ||x|| > 0 (non-negativity).
@ ||x|| =0if and only if x =10.
@ Forall x € R" and t € R, we have [|tx|| = || ||x]].
Q For all x,y € R"”, we have ||x +y|| < ||x]| + [ly]l-
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There are some examples for x € R":
© The {> norm is ||x||, = /> 01 x?
@ The 41 norm is ||x||; = D74 |xi]
Q The £, norm is [|x||, = (327, x:|P)/P for p > 1.

Q The /o norm is ||x|| ., = max; |x;|
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Orthogonality

© Two vectors x,y € R" are orthogonal if xTy =0.
@ A vector x € R" is normalized if ||x||, = 1.

@ A square matrix U € R™" is orthogonal if all its columns are
orthogonal to each other and are normalized (the columns are then
referred to as being orthonormal). In other word, we have

ulu=1=Uu".

@ Note that if U is not square, i.e., U € R™*" n < m, but its columns
are still orthonormal, then UTU =1, but UUT 1, we call that U is
column orthonormal.
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What is the volume of the tetrahedral?
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Given square matrix A € R™" as

-
[3(n) ]
the determinant of A is the “volume” of the set

i=1

n
S—{VER”:v—Zﬂ;a(i),whereogﬁiSl,i—l,...,n}.

The set S formed by taking all possible linear combinations of the row
vectors, where the coefficients are all between 0 and 1.
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The determinant of a square matrix A € R"*", is denoted by det(A) or
|A|, which is defined as

.
i=1

T=(T1,.--,Tn)

where 7 = (11,...,7,) is permutation of (1,2,...,n). The signature
sgn(7) is defined to be +1 whenever the reordering given by 7 can be
achieved by successively interchanging two entries an even number of
times, and —1 whenever it can be achieved by an odd number of such
interchanges.
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We can also define determinant recursively
n . .
det(A) =) (~1)Majdet(A\;\;) foranyje {1,...,n}
i=1

with the initial condition det(a;;) = aj;, where Ay;\; is the (n—1) x (n—1)
matrix obtained by deleting the i-th row and j-th column from A.
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Q det(l) =1
@ If we multiply a single row in A by a scalar t € R”, then the
determinant of the new matrix is ¢ det(A).

© If we exchange any two rows of the square matrix A, then the
determinant of the new matrix is — det(A).

© For A € R"™", we have det(A) = 0 if and only if A is singular.
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@ For A € R™" is triangular, then det(A) =[]/, aii.
@ For A e R™" B & RP*P and C € R"™P, we have

det <[ﬁ SD — det(A) det(B)

© For A € R"™*", we have det(A) = det(A").
© For A,B € R"™", we have det(AB) = det(A) det(B).
@ For A € R"" is orthogonal, we have det(A) = 1.
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Singular Value Decomposition

The singular value decomposition (SVD) of A € R™*" matrix is
A=UxV',

where U € R™*™ is orthogonal, X € R™*" is rectangular diagonal matrix
with non-negative real numbers on the diagonal and V € R"*" is
orthogonal.

@ The diagonal entries of X are uniquely determined by A and are
known as the singular values of A.

@ The number of non-zero singular values is equal to the rank of A.

© The columns of U and the columns of V are called left-singular
vectors and right-singular vectors of A, respectively.
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Singular Value Decomposition

The term SVD sometimes refers to the compact SVD, that is
A=UZxV,/

in which X, is square diagonal of size r X r, where r < min{m, n} is the
rank of A, and has only the non-zero singular values.

In this variant, U, is an m X r column orthogonal matrix and V, is
an n x r column orthogonal matrix such that

u'u, =V, v, =1
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Matrix norm is any function R™*"” — R that satisfies
@ For all A € R™*", we have ||A|| > 0.
@ ||A|| =0if and only if A =0.
@ Forall A€ R™ " and t € R, we have [[tA| = |t| ||A].
Q Forall A,B € R™*" we have ||A+ B| < |A| + |B].
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Given any matrix A € R™*7 its spectral norm is defined as

| Ax||
2 = sup |AX|l, ;

[All, = =
xER x£0 l1x[l, x€R™, [|x[|,=1

and its Frobenius norm is defined as

ZZaU \/tr(ATA).

i=1 j=1

IAllF =

We can show that

IAl, =01 and [|A]f = \/m

where o1 > 05 --+ > o, > 0 are the non-zero singular values of A.
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Low-Rank Approximation

Let A = U,}:,V;r be condense SVD of rank-r matrix A € R™*" and partition

o1
U =[u,...,u] eR™ X, = ER™, V, =[vi,...,v,] € R™".

Or

The matrix Ay = UxX, V] is the best rank-k approximation of A (k < r), where

g1
_ mxk _ . kxk _ nxk
Uk—[ul,...7uk]€R ,Zk_ - eR ,Vk—[vl,...,vk]E]R .

Ok

We have

A= argmln [|A —X]|, = argmin [|A—X]| .
rank(X)< rank(X)<k
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Quadratic Forms

Given a square matrix A € R"*" and a vector x € R”, the scalar x" Ax is
called a quadratic form and we have

n n
x Ax = g g ajjX;x;.
i=1 j=1

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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We introduce the definiteness as follows.

@ A symmetric matrix A € R"*" is positive definite if for all non-zero
vectors x € R” holds that xT Ax > 0. This is usually denoted by
A > 0.

@ A symmetric matrix A € R"" is positive semi-definite if for all
vectors x € R” holds that x" Ax > 0. This is usually denoted by
A>0.

Similarly, we can define negative definite and negative semi-definite
matrices.
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Schur Complement

Given matrices A € RP*P B € RPX9, C € R9%P and D € R9%9, we
suppose D is non-singular and let

A B
— (p+q)x(p+q)
M [ C D} eR .

Then the Schur complement of the block D for M is
A - BD!C c RP*P.

Then we can decompose the matrix M as

e i [ [P

and the inverse of M can be written as

oot L Y S
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Schur Complement

The decomposition

m—|A Bl _[! BD '] [A—BD!C 0 I 0
~|C D |0 | 0 D| IDIC 1
means we have det(M) = det(D) det(A — BD1C).

We consider the symmetric matrix

A B
M=o o)
with non-singular D and let S = A — BD 1BT, then

OM>-~0<D>0andS >~ 0.
Q@IfD~0 then M>0<<S > 0.

Lecture 01 (Fudan University) DATA 130044

luoluo@fudan.edu.cn 36 /47



Low-Rank Approximation and Beyond

For symmetric positive-definite A € R"*" its best rank-k approximation is

A =U X U] = argmin |A—X|, = argmin ||A—X]|¢.
rank(X)<k rank(X)<k

Inspired by probabilistic PCA, we find the better estimator

~ A A N 1
A, = Uk(}:k — (Slk)U;r + 6ly, where 6= Z oj.

We can verify

(Uk(Zk = 01)2,0) = argmin  ||A— (BB +6ly)||,
rank(B)<k,5€R

and

A=Al < 1A= Al

Lecture 01 (Fudan University) DATA 130044 luoluo@fudan.edu.cn 37 /47



The Gradient

Suppose that f : R™*" — R is a differentiable function that takes as input

a matrix X of size m X n and returns a real value. Then the gradient of f
with respect to X is

OFX) OF(X)T
9F(X) Ox11 Ox1n
— — . : mxn
X V£(X) . ; e R™",
oFX)  OF(X)
-8Xm1 aan-
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Some Basic Results

O(f(X) +&(X)) _ 9F(X) | 9g(X)

@ For X € R™*" we have

oX oX oX
otf (X) of(X)
mxn —
Q@ For XeR and t € R, we have X _t(?X :
ATX
@ For A, X € R™" we have M =A.
oX
TAx T
© For A € R™" and x € R", we have =(A+A")x.
T
A
If A is symmetric, we have I X _ 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Hessian

Suppose that f : R” — R is a twice differentiable function. Then its
Hessian with respect to x, written as V2f(x), which is defined as

0?f(x) 0?f(x) i
8X18X1 o 8X18X,,
Vi(x)=| .| R
0?f(x) 0?f(x)
0x,0x1 O0XnOXn

Taylor's expansion:

f(x) ~ f(a) + Vf(a)"(x —a) + %(x —a)' V3f(a)(x — a).
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Outline

© Convex Optimization
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Convex Function

A function f : RY — R is convex if it holds
flax+ (1 — a)y) < af(x) + (1 — a)f(y)

for all x,y € R and a € [0,1].

Theorem (first-order condition)

If a function f : RY — R is differentiable, then it is convex if and only if
Fly) = F(x) + (VF(x),y —x)

holds for any x,y € RY.

If a function f : RY — R is convex and differentiable, then x* is the global
minimizer of f(-) if and only if V£ (x*) =0.
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Convex Function

Theorem (second-order condition)

If a function f : RY — R is twice differentiable, then it is convex if and only if
V3f(x) = 0

holds for any x € RY.

s.,n-n,e.n.,ﬁ;.,m w
eceler !
HL%%#Z l'-Fl E"J Yurii Nesterov
InE—AEE
i Lectures
¥ s % on Convex
S Optimization
B # Second Edition
@anzsan 4\ Springer
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Example: Least Squares

Consider the least square problem

. 1 2
f(x) = - ||Ax — b|3.
min f(x) = 5 [[Ax — bl

where A € R™*" is full rank, b € R™ and m > n.

The solution is

x* = (ATA)!ATb.
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Pseudo Inverse

Let A = U,Z,V,T € R™*" be the condense SVD, where r is the rank of
A. We define the pseudo inverse of A as

AT =V, X U e R™™,

In special case, we have
© If rank(A) = n, we have AT = (ATA)7IAT.
@ If rank(A) = m, we have AT = AT(AAT)"L.

@ If A is square and non-singular, we have Af = A=1.

The solution of the general least square problem

. 1 2
min f(x) = 5 [|Ax — bl

is {x: x=ATb+ (1 - ATA)b, b € R"}.
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Gradient Descent Method

We consider the optimization problem

in f
min £(x),

where f : R? — R is differentiable.
The most popular method is gradient descent, which follows

Xt4+1 = Xt — me(xt),

where n; > 0.
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Examples: Adversarial Attack

+.007 x

“panda” “gibbon”
57.7% confidence 99.3 % confidence

We can only access the output of a big model.
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Zeroth-Order Optimization

We consider the optimization problem

in f
min, #(x),

where the gradient of f : RY — R is difficult to access.

We can solve the problem by iteration

f(Xt + (5[11-) — f(Xt)
5 e

Xt41 = Xt — 1t -

for some 7 > 0 and & > 0, where u; € RY is a random vector.

It also works for nonsmooth nonconvex optimization.
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